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EXECUTIVE SUMMARY 

We have been asked by the Electric Reliability Council of Texas (ERCOT) to estimate the market 

equilibrium reserve margin (MERM) and the economically optimal reserve margin (EORM) for 

ERCOT’s wholesale electric market.  For this analysis, Astrapé Consulting simulated the ERCOT market 

using its Strategic Energy & Risk Valuation Model (SERVM).  The model captures ERCOT’s wholesale 

market design and projected system conditions for 2024; it probabilistically simulates the economic 

and reliability implications of a range of possible reserve margins under a range of weather and other 

conditions. The MERM concept is relevant in ERCOT because, unlike all other electricity systems in 

North America, ERCOT does not have a resource adequacy reliability standard or reserve margin 

requirement.  In ERCOT, the reserve margin is ultimately determined by suppliers’ costs and 

willingness to invest based on market prices, where prices are determined by market fundamentals 

and by the administratively-determined Operating Reserve Demand Curve (ORDC) during tight 

market conditions.  This approach creates a supply response to changes in energy market prices 

towards a “market equilibrium”; low reserve margins cause high energy and ancillary service (A/S) 

prices and attract investment in new resources, and investment will continue until high reserve 

margins result in prices too low to support further investment. 

We estimate a market equilibrium reserve margin of 12.25% under projected 2024 market conditions, 

as shown in Figure ES-1.1 This is higher than our MERM projection of 10.25% in our 2018 study, 

however, the projections of system reliability are nearly identical at 0.5 Loss of Load Expectation 

(LOLE).2 

 

 

 

 

 

 

 

 

 
1 This estimate should not be interpreted as a precise forecast for 2024 or any other particular year, but as a 
reasonable expectation around which actual reserve margins may vary as market conditions fluctuate.  To expect a 
persistently lower reserve margin would be to assume investors will forego profitable opportunities to add additional 
supply, and to expect a persistently higher reserve margin would be to assume investors will over-invest. 
2 The 2018 Report can be found at Newell, et al. (2018b). 
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Figure ES-1. Market Equilibrium Reserve Margin 

 

Input and reserve margin accounting changes with both upward and downward effects have been 

introduced since 2018. An increase in renewable penetration put downward pressure on MERM, 

while the changes in resource accounting increased the MERM. The PUCT administered changes to 

the ORDC which put upward pressure on MERM, and higher forced outage rates also put upward 

pressure on MERM. The change in marginal resource composition put slight downward pressure on 

MERM. The waterfall chart in Figure ES-2 quantifies the magnitude of the impact of each of these 

factors. 
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Figure ES-2. Base MERM Changes from 2018 to 2020 Study 

 

In terms of reliability, our probabilistic simulations indicate that under base case assumptions with a 

market equilibrium reserve margin of 12.25%, the system is expected to experience 0.5 days per year 

Loss of Load Expection (LOLE).3 As shown in Figure ES-3, this is significantly higher than the 0.1 events 

per year LOLE standard used by most electric systems in North America for planning purposes. It is 

also important to note that this LOLE is the same value reported in the 2018 study at the MERM of 

10.25%. Intuitively, the higher MERM in this study would supply higher reliability. However, the 

higher Equivalent Forced Outage Rate (EFOR) assumptions, combined with a discrepancy between 

the renewable credit (or reliability contribution) estimated for CDR4 reserve margin reporting and the 

actual reliability value provided by these resources, increase the MERM without an improvement to 

reliability. 

 

 

 

 
3 For the simulations, a loss-of-load (LOL) event occurs when the hourly load, plus a minimum operating reserve level 
of 1,000 MW, is greater than available resource capacity.  A LOL event is recorded for each day of the simulation if 
one LOL hour occurs in the 24-hour span, or if there are more than one non-contiguous LOL hours during the day.  
For a given reserve margin level, the LOLE is the mean number of LOL events for 10,000 simulations (40 weather 
years, 5 load error levels, 50 outage draws). 
4 CDR is the “Report on Capacity, Demand and Reserves for the ERCOT Region,” typically released in May of each 
year, with an update released in December. 
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 Figure ES-3. Loss-of-Load Expectation at Varying Reserve Margins 

 

Determination of the economic potential of marginal resources in an energy-only market is complex. 

The potential energy margins of any generating resource are a function of the load profile, the 

technological composition of the entire generation fleet, the reserve margin of the fleet, the fuel 

prices to operate those generators, and other factors. The MERM for marginal peaking capacity then 

is in part determined by the characteristics of the other resources on the system. While this study is 

designed to analyze only marginal peaking capacity decisions, the ramifications of that equilibrium 

penetration can inform the calculus for other resource classes making investment or retirement 

decisions as well. 

One interaction among resources that is analyzed in detail for this study is the impact of renewable 

penetration on MERM for marginal peaking capacity. Since the introduction of renewable generation, 

with its de minimis variable operating costs, will tend to depress market prices5, we find that the 

MERM will be reduced by increases in renewable penetration. This downward pressure on the MERM 

from increasing renewables is initially small. For the 2018 study, Astrapé and Brattle quantified that 

an increase of 20 GW of renewable capacity would shift MERM down by only 0.75 percentage points, 

or approximately 500 MW. The magnitude of the impact however grows as the penetration of 

renewable grows, and is particularly sensitive to solar capacity. The size of the impact is primarily 

 
5 The volatility of renewable output could lead to more frequent periods of scarcity pricing if the system is not able 
to respond quickly enough. However, we assume this effect is mitigated by carrying additional operating reserves 
to be able to respond to the renewable volatility. As such, the addition of renewable generation is expected to 
depress market prices. 
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dependent on how the renewable fleet affects the frequency of hours with high electricity market 

prices. In an extremely high solar penetration scenario, the net load shape is very steep, so there are 

very few hours with very high loads, and commensurately high market price hours are infrequent. Up 

to projected penetrations in 2024 however, the net load shape is quite flat. There are eight or more 

hours every day within a few thousand MW of the daily peak load. Figure ES-4 compares the net load 

shape in the base case and in a high renewable scenario. Both scenarios require the same reserve 

margin to maintain the same reliability, but the high renewable scenario will have many fewer hours 

with high market prices.  

Figure ES-4. Average August Daily Net Load Comparison 

 

The moderation of net load peak frequency can be seen clearly in the annual net load duration curve 

shown in Figure ES-5. Scarcity conditions and associated high prices are most likely when net load is 

near its annual peak. The addition of another 15 GW of solar capacity dramatically steepens the net 

load duration curve near the annual peak. This steepening translates to lower frequency of scarcity 

conditions and high prices, depressing MERM.  

 

 

 

 

6-8 Hours Near Peak 

in 2024 Base Case 

2-3 Hours Near Peak 

in 2024 High 

Renewable Case 
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Figure ES-5. Net Load Duration Curve Comparison 

 

From the waterfall chart (Figure ES-2), the impact of the 20 GW of renewable additions from the 2018 

study to the 2020 study was to reduce the MERM by 1.00 percentage points. Because of the more 

pronounced effect on load shape of additional solar from the projected 2024 penetration, the next 

20 GW of renewable additions analyzed in the high renewable scenario are expected to reduce MERM 

by 2.00 percentage points to 10.25%, as shown in Figure ES-6. At this level, the reliability implications 

of a different MERM are significant with firm load shed occurring 0.5 days per year at MERM in the 

base case, but more than 1.3 days every year in the high renewable case. 

Figure ES-6. Marginal Unit Net Energy Revenues 
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While the change in net load shape reduces the frequency of scarcity pricing, it creates opportunities 

for other classes of resources, namely battery storage, as shown in Figure ES-7. Prior to the 

introduction of any solar, the load peak in ERCOT spans several hours; the net load is within a few 

thousand MW of the daily peak for six to eight hours. Even after the addition of over 16 GW of solar 

projected to be online by 2024, the net load shape is still quite flat near the peak, and consequently 

batteries would need to supply long duration storage. Subsequent additions begin to produce steeper 

net loads near the daily peak, and at the penetrations in the high renewable scenario, the steepness 

of the net load shape results in significant four-hour battery capacity6 being able to supply capacity 

value. 

Figure ES-7. Net Load Shape Impact of Solar7 

 

While the capital cost of batteries is higher than that of conventional combustion turbine (CT) 

capacity, the economic benefits of batteries are substantial in the high renewable scenario. At the 

high renewable MERM of 10.25%, incremental batteries can expect to earn a return in excess of their 

fixed and variable costs from the energy and ancillary service market. Swapping out new CTs for new 

 
6 Batteries of shorter duration than 4 hours can provide some capacity value, but as the penetration increases, the 
capacity value potential declines. This study focused on higher penetrations of storage which require average 
durations of 4 hours or longer. We note that much of the current battery capacity development activity in ERCOT is 
of shorter duration, but our analysis is focused on future portfolios when longer durations will be needed to supply 
capacity value. 
7 Profiles developed from a single example weather day with varying solar penetration. 
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four-hour batteries yields the energy margins8 shown in Figure ES-8 for incremental battery capacity, 

and demonstrates a breakeven incremental penetration of 1,100 MW.9 The energy margin decline is 

modest and if technology improvements lead to a battery capital cost decline to $115/kw-yr, up to 

6.5 GW of incremental four-hour battery capacity could be economic in ERCOT in a high renewable 

scenario with the reserve margin at 10.25%. These results are contingent on a number of assumptions 

including the bidding behavior of renewable resources and the qualification for providing ancillary 

services, and they do not include other potential value streams for storage including locational 

benefits, but they provide indications of the economic potential for storage in ERCOT in the future. 

Figure ES-8. Storage Energy Margins 

 

Another key difference from the 2018 study is an increase to ORDC pricing.10 A comparison of the 

2018 and 2020 ORDC adders is illustrated in Figure ES-9. At the same level of reserves, market 

participants will realize higher energy and ancillary service prices which will increase MERM.  

 

 

 

 
8 Energy margins as referenced in this report are calculated as total revenue from energy and ancillary service 
markets minus variable operating costs. 
9 The base case has 1,103 MW of batteries. Battery analysis is incremental to that capacity. 
10 See PUCT (2019b). 
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Figure ES-9. ORDC Curve Comparison 

 
As shown in the waterfall chart (Figure ES-2), the ORDC curve change increased the MERM by 1.5 

percentage points. In isolation this administrative change would improve reliability. However, the 

increase of renewable penetration in the base case almost completely offsets this effect.  

Other key differences from the 2018 study include higher forced outages rates in the more recent 

outage data used for this study and the effect of the change in the reference technology.  

While the MERM tests market outcomes, ERCOT stakeholders may be interested in the associated 

economic optimality outcomes.  The economic optimum occurs at the reserve margin that minimizes 

societal costs net of all supply costs and the lost value from any disruptions in electric service.  We 

calculate the economically optimal reserve margin (EORM) by finding the balance between the 

marginal costs and marginal benefits of adding capacity.  The marginal costs are simply the levelized 

capital costs and fixed costs of a new generator.  Marginal benefits include lower production costs 

and reduced load shedding (at an assumed cost of $9,000/MWh), reserve shortages, demand-

response calls, and other costly emergency events. Our simulations quantify how scarcity event 

frequencies decrease (at a diminishing rate) as reserve margins increase.  As shown in Figure ES-10 

below, we estimate 11.00% as the EORM, based on the risk-neutral, probability-weighted-average 

cost of 80,000 simulations.11  However, the estimated societal costs are relatively flat with respect to 

reserve margin near the minimum, with only modest variation between reserve margins of 10.00% 

and 12.00%. There is also a noticeable asymmetry in costs on either side of the EORM, suggesting risk 

 
11 40 weather years, each at 5 levels of non-weather-based load forecast error, with 50 generator outage draws, at 
8 modeled reserve margins. 
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adjustment value to consumers to maintaining a reserve margin higher than EORM. While the 

asymmetry was present in previous EORM analyses, the magnitude is more pronounced in this study 

due to a higher penetration of energy limited resources that can be exhausted more rapidly at very 

low reserve margins and the recognition of additional reliability risks in the SERVM modeling. The 

mechanism to achieve a higher reserve margin than economically optimum in an energy-only market 

is through market pricing constructs. 

Figure ES-10. Total System Costs across Planning Reserve Margins 

 

Our analysis shows that the market equilibrium of 12.25% is greater than the economically optimal 

level of capacity by 1.25 percentage points.  The market equilibrium is higher than the economic 

optimum because the ORDC as currently designed sets prices higher than the marginal value of 

energy during scarcity conditions.  The size of the gap is lower than suggested by current ORDC values 

and the gaps identified in previous studies because of the presence of more energy-limited resources. 

In certain reliability-constrained hours in the simulation, additional capacity can provide more value 

than its nameplate multiplied by the value of lost load (VOLL). This is because in addition to being 

available during the peak hour, the incremental resource can preserve the energy from the energy 
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limited resources such as battery and demand response12 for availability during peak conditions. This 

means that the system savings in some extreme hours will be larger than the market price benefit 

the marginal CT realizes.  

Table ES-1 shows the MERM and EORM for the base case as well as for sensitivity and scenario 

analyses conducted for this study.  Some of the key assumptions we test are the estimated capital 

cost of new generation, load forecasting error, coal and natural gas prices, VOLL, intermittent 

renewable penetration, and weather distributions.  Regarding weather, our base case assumption is 

that all 40 years of historical weather are assigned an equal probability of occurring for the 2024 

simulation year, and this reliance on long term history is consistent with the EORM Manual.13  More 

recent weather has been hotter (especially 2011) and may be more representative of future weather.  

Assuming accordingly that each of the last 15 weather years has a 1/15th chance of reoccurring (with 

0% weight on each of the prior 25 years) leads to higher simulated prices and reliability events at a 

given reserve margin; but the higher prices would attract more investment, resulting in a 1% higher 

market equilibrium reserve margin and similar reliability to the base case. 

Table ES-1. Market Equilibrium and Economically Optimal Reserve Margins and Reliability 

Scenario/Sensitivity 
MERM EORM 

(%) (%) 

Base Case 12.25 11.00 

Vary Cost of New Entry (CONE) 11.25 – 13.25 10.00 – 12.00 

Vary VOLL 12.25 10.25 – 13.25 

Vary Probability of Weather Years 13.25 12.00 

Vary Forward Period and Load Forecast Uncertainty 11.25 – 12.00 10.00 – 10.75 

High Renewables Scenario  10.25 9.00 

Lower EFOR 11.25 10.00 
Notes: 
 Table reflects all scenarios and sensitivities analyzed, as described in Section C; Current practice has VOLL set to the max of the 

ORDC but the sensitivity which varies to VOLL does not change the ORDC curve and therefore does not affect the MERM. 

These estimates must not be interpreted as deterministic, since actual market conditions will 

fluctuate from year-to-year. In reality, the reserve margin will vary as plants enter and exit.  

Moreover, even at a given reserve margin, realized reliability and price outcomes can deviate far from 

the expected value, primarily due to weather and variations in wind generation.  For example, with a 

projected market equilibrium reserve margin of 12.25%, we estimate that in the 90th percentile 

outcome—representing relatively hot weather and low generation availability—energy prices would 

more than double, marginal units could have net energy revenues reaching $246/kW-year, with 1.2 

load-shed events per year (compared to a mean of 0.5 across all conditions modeled). 

 
12 Two demand response categories – TDSP and ERS – have annual, seasonal, or daily call constraints. 
13 See ERCOT (2017b). Note that the methodology described in the manual is derived from our 2014 study. 



16 
 

I. BACKGROUND AND CONTEXT 

We have been asked to estimate the market equilibrium reserve margin (MERM) and the economically 

optimal reserve margin (EORM) for ERCOT’s wholesale electric market. 

The MERM describes the reserve margin that the market can be expected to support in equilibrium, as 

investment in new supply resources responds to expected market conditions.  This concept is relevant in 

ERCOT because, unlike all other electricity systems in North America, ERCOT does not have a reserve 

margin requirement.  In ERCOT, the reserve margin is ultimately determined by suppliers’ costs and 

willingness to invest based on market prices, where prices are determined by market fundamentals and 

by the administratively-determined Operating Reserve Demand Curve (ORDC) during tight market 

conditions.  This approach creates a supply response to changes in energy market prices toward a “market 

equilibrium”; low reserve margins cause high energy and ancillary service (A/S) prices and attract 

investment in new resources, and investment will continue until high reserve margins result in prices too 

low to support further investment.  The PUCT also wants to know whether the market outcome will be 

acceptable with respect to economic optimality.  The EORM is the benchmark for establishing the 

sufficiency of the expected MERM, where the marginal benefits of new supply are just equal to the 

marginal costs of new supply. 

As the left panel of Figure 1 shows, higher reserve margins are associated with higher generation capital 

and fixed costs of building more capacity (dark blue line).  The higher costs are offset by a reduction in the 

frequency and magnitude of costly reliability events, such as load-shed events, other emergency events, 

and demand-response curtailments, and the reduced production costs (light blue line).  The tradeoff 

between increasing capital costs and decreasing reliability-related operating costs results in a U-shaped 

societal cost curve (red line), with costs minimized at what we refer to as the “economically optimal” 

reserve margin.14  The right chart of Figure 1 shows how we derive the “market equilibrium” reserve 

margin.  The marginal cost of capacity is known as the “Cost of New Entry” (CONE), which depends on 

technology costs and economic conditions such as tax structures and remains stable across reserve 

margins (dark blue line).  A marginal unit’s net revenues from energy markets and ancillary services (light 

blue line) quickly decrease with less scarcity pricing at higher reserve margins.  The intersection point of 

a marginal unit’s net revenue and CONE represent the “market equilibrium” reserve margin where the 

marginal unit breaks even. 

 

 

 
14 In developing our approach to calculating the economically optimal reserve margin, we draw upon a large body of 
prior work conducted by ourselves and others, although the majority or all of this prior work was relevant in the 
context of regulated planning rather than restructured markets.  For example, see Poland (1988), p.21; Munasinghe 
and Sanghvi (1988), pp. 5–7, 12–13; and Carden, Pfeifenberger, and Wintermantel (2011). 
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Figure 1. Economically Optimal Reserve Margin and Market Equilibrium Reserve Margin Concepts 
(Illustrative Schematics, Not Simulation Results) 

 

This study estimates the MERM and the EORM for the ERCOT market given the currently formulated 

scarcity pricing mechanism and expected market conditions.  It estimates the reliability at each of those 

levels of reserves, but strictly for informational purposes since there is no reliability requirement.  Our 

study methodology follows the ERCOT manual for estimating the EORM and MERM.15  The primary 

analytical tool in this study is energy market simulations using the SERVM model.  SERVM simulates hourly 

energy demand (under a range of weather conditions), energy production, and energy prices given the 

marginal cost of available supply and the Operating Reserve Demand Curve (ORDC).  By analyzing the 

results of simulations conducted at many possible levels of investment, we can identify which of the 

reserve margins represents the MERM and which level represents the EORM. 

This study was previously performed in 2014 and 2018.  The present study incorporates updated market 

conditions regarding the projected resource mix, the CONE for a reference generation resource, ORDC, 

maintenance outages, and gas prices; different assumptions regarding weather; higher forced outage 

rates based on recent data; and current conventions for describing peak load and accounting for 

intermittent resources in expressing the reserve margin. 

  

 
15 See ERCOT (2017b).   
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II. STUDY ASSUMPTIONS AND APPROACH 

Our simulations rely on a detailed representation of the ERCOT system, including: load and weather 

patterns and their probabilistic variations; the cost and performance characteristics of ERCOT’s generation 

and demand-response resources; the mechanics of the ERCOT energy and ancillary services markets, 

including a unit commitment and economic dispatch of all generation resources, demand-response 

resources, and the transmission interties with neighboring markets.  Assumptions on the generation fleet, 

demand-response penetration, fuel prices, and energy market design reflect expected conditions in 2024. 

A. MODELING FRAMEWORK 

We use the Strategic Energy & Risk Valuation Model (SERVM) to estimate the economically optimal 

reserve margin, the market equilibrium reserve margin, and associated reliability in the ERCOT system.16  

Like other reliability models, SERVM probabilistically evaluates the reliability implications of any given 

reserve margin.  It does so by simulating generation availability, load profiles, load uncertainty, inter-

regional transmission availability, and other factors.  SERVM ultimately generates standard reliability 

metrics such as loss-of-load events (LOLE), loss-of-load hours (LOLH), and expected unserved energy 

(EUE).  Unlike other reliability modeling packages, however, SERVM simulates economic outcomes, 

including hourly generation dispatch, ancillary services, and price formation under both normal conditions 

and emergency operating procedures.  SERVM estimates hourly and annual production costs, customer 

costs, market prices, net import costs, load shed costs, and generator net energy revenues as a function 

of the planning reserve margin.  These results allow us to compare these variable costs against the 

incremental capital costs required to achieve higher planning reserve margins, such that the optimal 

reserve margin can be identified.  The MERM can be identified by comparing potential new generators’ 

net revenues to their levelized fixed costs. 

The multi-area economic and reliability simulations in SERVM include an hourly chronological economic 

dispatch that is subject to inter-regional transmission constraints.  Each generation unit is modeled 

individually, characterized by its economic and physical characteristics.  Planned outages are scheduled in 

off-peak seasons, consistent with standard practices, while unplanned outages and derates occur 

probabilistically using historical distributions of time between failures and time to repair, as explained in 

Appendix 1.  Load, hydro, wind, and solar conditions are modeled based on profiles consistent with 

individual historical weather years.  Dispatch limitations and limitations on annual energy output are 

imposed on certain types of resources such as demand response, hydro generation, and seasonally 

mothballed units. 

The model implements a week-ahead and then multi-hour-ahead unit commitment algorithm considering 

the outlook for weather and planned generation outages.  In the operating day, the model runs an hourly 

 
16 SERVM software is a product of Astrapé Consulting, which authored this report. See Astrapé (2020). 
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economic dispatch of baseload, intermediate, and peaking resources, including an optimization of 

transmission-constrained inter-regional power flows to minimize total costs.  During most hours, hourly 

prices reflect marginal production costs, with higher prices being realized when import constraints are 

binding.  During emergency and other peaking conditions, SERVM simulates scarcity prices that exceed 

generators’ marginal production costs as explained further in Appendix 1.E 

To examine a full range of potential economic and reliability outcomes, we implement a Monte Carlo 

analysis over a large number of scenarios with varying demand and supply conditions.  Because reliability 

events occur only when system conditions reflect unusually high loads or limited supply, these simulations 

must capture wide distributions of possible weather, load growth, and generation performance scenarios.  

This study incorporates 40 weather years, 5 levels of economic load forecast error,17 and 50 draws of 

generating unit performance for a total of 10,000 iterations for each simulated reserve margin case. Each 

individual iteration simulates 8,760 hours for the year 2024.  The large number of simulations is necessary 

to accurately assess the reliability and economic implications of varying reserve margins.  A probabilistic 

approach is needed to characterize the distribution of possible outcomes, particularly because the 

majority of reliability-related costs are associated with infrequent and sometimes extreme scarcity events.  

Such reliability events are typically triggered by rare circumstances that reflect a combination of extreme 

weather-related loads, high load-growth forecast error, and unusual combinations of generation outages. 

To properly capture the magnitude and impact of reliability conditions during extreme events, a critical 

aspect of this modeling effort is the correct economic and operational characterization of emergency 

procedures.  For this reason, SERVM simulates a range of emergency procedures, accounting for energy 

and call-hour limitations, dispatch prices, operating reserve depletion, dispatch of economic and 

emergency demand-response resources, and administrative scarcity pricing.18 

B. PRIMARY INPUTS 

The projected resource mixes in ERCOT have shifted and load has grown since completion of the 2018 

study report.  This section focuses on those changes and discusses their implications for the MERM and 

EORM. 

Load and resource accounting for the base case is based on ERCOT’s conventions in the May 2020 CDR, 

as summarized in column C of Table 1. Peak load is reduced for non-controllable load resources (LRs), 10-

minute and 30-minute emergency response service (ERS), and Transmission/Distribution Service 

 
17 The five discrete levels of load forecast error we model are equal to 0%, +/−2%, and +/−4% above and below the 
50/50 ERCOT load forecast. 
18 Similar to other reliability modeling exercises, our study is focused on resource adequacy as defined by having 
sufficient resources to meet peak summer load.  As such, we have not attempted to model other types of outage or 
reliability issues such as transmission and distribution outages, common mode failures related to winter weather 
extremes, or any potential issues related to gas pipeline constraints or delivery problems. 
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Providers (TDSP) energy efficiency and load management.  On the supply side, most resources are counted 

toward the reserve margin at their summer ratings, except for coastal wind, panhandle wind, other wind, 

solar, and storage counting at 63%, 29%, 16%, 76%, and 0% of nameplate respectively, and the High 

Voltage Direct Current (HVDC) ties counting at approximately 31% of the path ratings, consistent with the 

CDR. The capacity credit estimation process for renewable resources is discussed further in section II.A.  

Table 1. Components of Supply and Demand in Current 2020 Study vs. 2018 Study 

 Values from 
2018 Study 

Re-expressed 
Values from 
2018 Study 
(Using 2020 
Accounting) 

Values from 
2020 Study 

Difference 
Attributable to 

Accounting 
Changes 

Difference 
Attributable 

to Fundamentals 
Changes 

 (MW) (MW) (MW) (MW) (MW) 
 [A] [B] [C] [B-A] [C-B] 

Modelled Year 2022  2024   

Accounting Methodology Year 2018  2020   

Peak Load 79,027 79,027 82,982 0 3,955 

Load Reduction 2,173 2,173 2,202 0 29 

     LRs serving RRS 1,119 1,119 1,172 0 53 

     10-Minute ERS 140 140 76 0 -64 

     30-Minute ERS 632 632 692 0 60 

     TDSP Curtailment Programs 282 282 262 0 -20 

Supply 85,919 86,813 93,979 894 7,166 

     Conventional Generation 72,441 72,441 68,395 0 -4,046 

     Hydro 467 467 474 0 7 

     Wind 6,331 7,052 9,137 721 2,085 

     Solar 2,708 2,744 12,161 36 9,417 

     Storage 324* 0 0** -324 0 

     PUNs 3,259 3,259 2,962 0 -297 

     Capacity of DC Ties 389 850 850 461 0 

Reserve Margin 11.80% 12.96% 16.34% 1.16% 3.38% 
Notes: *The 324 MW of storage capacity represents a CAES unit. Batteries were also given 0% capacity credit in the 2018 study.  

**1,103 MW of nameplate capacity of storage is included in the 2020 study but given a 0% capacity credit in the reserve margin   

calculation. 

The base 2024 supply fleet, as summarized in column C of Table 1 is consistent with the 2020 North 

American Electric Reliability Corporation (NERC) Long-Term Reliability Assessment (LTRA) report.19  The 

fleet summary developed by ERCOT staff for the NERC LTRA was the most recent data available when this 

study was developed.  When compared to the 2020 CDR values for 2024, the supply fleet fluctuates by a 

relatively modest 129 MW of thermal capacity, 115 MW of wind, and 620 MW less of solar installed 

 
19 We include or exclude new units and retirements starting in the specified year and completely exclude units that 
have been mothballed.  We model switchable units as internal resources.  Data was provided, as submitted to NERC, 
by ERCOT staff. 
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capacity (reflecting reported delays in planned solar projects by developers).  The composition of installed 

capacity in the 2020 LTRA is summarized in Figure 2. 

Figure 2. Installed Capacity by Resource Type 

  
Sources and Notes: Most recent LTRA data supplied by ERCOT staff and ERCOT, 2020a.The LTRA data 
was comparable to the capacities provided in the May 2020 CDR. 

We conducted simulations over a wide range of reserve margins by adding or removing capacity from this 

supply fleet. To analyze higher reserve margins, we add gas CT capacity, assuming the characteristics 

shown in Table 2 below that were derived from a recent study Brattle conducted. To analyze lower reserve 

margins, we selectively retired coal units and excluded planned thermal units.20  We assume the CONE for 

the new CT units are $93,500/MW-year.21 

 

 

 

 

 

 

 
20 More detail on the reference technology can be found in Appendix 1.B.1. 
21 The CONE value is based on the results from the 2018 PJM CONE study (Newell, et al. 2018a) 
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Table 2. Reference Technology Cost and Summer Performance Characteristics 

 Characteristic Unit Simple Cycle 
Plant Configuration   

     Turbine  GE 7HA.02 
     Configuration  1 x 0 
Heat Rate (HHV)   

     Base Load   

          Non-Summer (Btu/kWh) 9,138 
          Summer (Btu/kWh) 9,274 
Installed Capacity   

     Base Load   

          Non-Summer (MW) 371 
          Summer (MW) 352 
CONE ($/kW-yr) 93.5  

  Sources and Notes: Based on ambient conditions of 92°F Max. Summer (55.5% Humidity).  

On the demand side, this study starts with ERCOT’s peak load forecast for 2024, and then uses hourly 

shapes under many possible weather patterns.  We simulate each of 40 weather years, from 1980 through 

2019 (with corresponding wind and solar conditions from the same years).  When calculating expected 

values, we assume an equal probability for each year’s weather.  Applying equal probabilities is reasonable 

given that so many years can be taken to be fairly representative of the underlying distribution, assuming 

there is not a trend in the average weather or in the variability of weather.  (Other possibilities are 

considered in the Section 45. below.)   

A. RENEWABLE ACCOUNTING 

The CDR methodology used for determining the renewable capacity contribution is calculated by the 

following process:  

• Wind Capacity Contribution Values: Values are calculated for three zones--Coastal, Panhandle, 

and Other—based on average telemetered dispatch limits (HSLs) during the highest 20 seasonal 

peak load hours for each season for each of the last ten years (2010-2019). They are re-calculated 

after each season with the new seasonal historical data. In addition to including a new Panhandle 

zone for calculating contribution values, another change introduced in 2019 was to use weighted 

averaging of the historical seasonal nameplate capacities. This approach reduces the influence of 

older wind turbine technologies installed in the earlier years of the estimation period, and thereby 

increased the contribution values relative to the ones based on the original methodology. 

• Solar Capacity Contribution Values: Values are based on average telemetered HSLs during the 

highest 20 seasonal peak load hours for each season for each of the last three years (2017-2019). 
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They are re-calculated after each season with new seasonal historical data. Weighted-averaging 

of the seasonal nameplate capacities is also applied to the solar contribution values. 

However, the value from this calculation will not match the calculated reliability contribution from SERVM 

simulations for the same resources. Table 3 illustrates the apparent disconnect between the reported 

capacity value and the true reliability contribution of renewable resources.22 

Table 3. Potential ELCC Methods: Average Output Versus Peak Net Load Reduction  

  Wind  Solar 

  

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Peak Net Load 
Reduction (Modeled 

Reliability 
Contribution) 

 

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Peak Net Load 
Reduction (Modeled 

Reliability 
Contribution) 

2010 12% 8%  78% 75% 

2011 24% 12%  83% 72% 

2012 13% 6%  80% 72% 

2013 24% 13%  82% 80% 

2014 24% 16%  80% 68% 

2015 18% 13%  81% 76% 

2016 30% 21%  76% 71% 

2017 24% 18%  75% 68% 

2018 20% 16%  76% 70% 

2019 27% 16%  79% 65% 

Average 22% 14%  79% 72% 

This disconnect means that the reserve margin needed to maintain the same reliability will shift. Since the 

reliability contribution is less than the average output during high gross load hours, the reserve margin 

will increase. This disconnect is not new. The 2018 study also used CDR accounting practices, and likewise 

the renewable capacity credit did not match its reliability contribution either. In order to isolate the impact 

of the renewable accounting on changes in MERM from the 2018 study to this study, only the incremental 

disconnect is quantified.  

The magnitude of the incremental disconnect is about 1,800 MW or a 2% increase in reserve margin.23 

Other reserve margin accounting related changes from the 2018 study include the addition of 1,103 MW 

of battery storage capacity. These resources are not given any capacity credit in CDR accounting, but they 

 
22 The modeled peak net load reduction represents the analytical reduction in annual net load peak between gross 
load and gross load minus modeled wind or solar output. Other factors can affect the simulated reliability benefits 
of wind and solar, so the peak net load reduction is only an approximation of the reliability contribution of the 
respective renewable portfolios, but it is more accurate than using an average output methodology. 
23 Increase in counted wind capacity in CDR from values used in the 2018 study to those in this study was 2,728 MW. 
Increase in reliability contribution was approximately 950 MW, resulting in an incremental disconnect of 1,778 MW. 
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provide reliability benefits in the SERVM simulations, offsetting the increase in reserve margin due to 

renewable penetration. The net impact of the resource accounting treatment from the 2018 study to this 

study is an increase in reserve margin of one percentage point. For the higher renewable penetration 

analyzed in this study, the reserve margin accounting was normalized such that the capacity credit of 

incremental renewable resources matched its simulated reliability contribution. Given the complexity of 

reserve margin accounting and reliability contributions, ERCOT commissioned the calculation of Effective 

Load Carrying Capability (ELCC) for each renewable resource category to rigorously quantify the dynamic 

of declining capacity contributions as a function of increasing renewable penetration. This analysis is 

documented in Appendix 2. 

B. SCARCITY PRICING AND DEMAND RESPONSE MODELING 

A number of different types of demand-side resources contribute to resource adequacy and price 

formation in ERCOT.  Table 4 summarizes these resources, explaining how we model their characteristics, 

their assumed marginal costs when utilized, and how they are accounted for in the reserve margin.  We 

developed these assumptions in close coordination with the ERCOT staff, who provided assumptions 

regarding the appropriate quantities for modeling. 

The marginal costs of these demand-side resources are highly uncertain, although the marginal costs we 

report in the table are in the general range that we would anticipate given the sparse data availability.  

Most of these resources including TDSP load management, emergency response service (ERS), and load 

resources (LRs) are dispatched for energy based on an emergency event trigger rather than a price-based 

trigger consistent with marginal cost.  We use ERCOT’s administrative scarcity pricing mechanism, the 

ORDC, to reflect the willingness to pay for spinning and non-spinning reserves in the real-time market.  

We make the simplifying assumption that these resources are triggered in order of ascending marginal 

cost, and at the time when market prices are equal to their marginal curtailment cost, as explained further 

in Appendix 1.E.4 below. 

Energy efficiency (EE) is not explicitly modeled because the load shapes already reflect their projected 

impact as a function of historical energy reduction trends.  These resources are appropriately accounted 

for using the conventions of ERCOT’s CDR report as explained further in Appendix 1.A.1 below.  

Two programs with overlapping response were modeled explicitly in both load and resources: four 

coincident peak (4CP) and price-responsive demand (PRD). Both programs had strong response in 2019 

when the reserve margin was lower than typically experienced. A single model for the aggregate response 

was constructed to gross up the synthetic load shapes. For simulating the respective response, separate 

functions were developed since PRD response varies with price while 4CP is primarily expected to vary as 

a function of load only. At low reserve margins then, PRD response is expected to be higher with the 

corresponding higher prices while 4CP response is the same at all reserve margin levels. 
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Table 4. Summary of Demand Resource Characteristics and Modeling Approach 

Resource Type 
Quantity 

(MW) 
Modeling Approach 

Marginal 
Curtailment 

Cost 

Adjustments 
to ERCOT 

Load Shape 

Reserve Margin 
Accounting 

TDSP Programs 

Energy Efficiency 2,884 Not explicitly modeled. n/a None Load reduction 

Load Management 262 Emergency trigger at EEA Level 1 $2,469 None Load reduction 

Emergency Response Service (ERS) 

30-Minute ERS 691 Emergency trigger at EEA Level 1 $1,372 None Load reduction 

10-Minute ERS 76 Emergency trigger at EEA Level 2 $2,469 None Load reduction 

Load Resources (LRs) 

Non-Controllable 
LRs 

1,172 

Economically dispatch for Responsive 
Reserve Service (most hours) or energy 

(few peak hours). Emergency 
deployment at EEA Level 2 

$2,469 None Load reduction 

Controllable LRs 0 
Currently no controllable LRs modeled 

in ERCOT 
n/a n/a n/a 

Voluntary Self-Curtailments 

4 CP Reductions 1,700 
Load shapes grossed up for projected 
response and corresponding response 

modeled on the resource side 
n/a None 

None; excluded from 
reported peak load 

Price Responsive 
Demand 

Variable 
Load shapes explicitly grossed up for 
expected response. Economic self-

curtailment modeled on resource side 

$5,000 - 
$9,000/MWh 

None 
None; excluded from 
reported peak load 

Sources and Notes: 
 Developed based on analyses of recent DR participation in each program and input and data from ERCOT staff.  See corresponding sections 

in the Appendix for more detail.  
  

C. STUDY SENSITIVITIES AND SCENARIOS 

In addition to the base case analysis described above, we simulated three alternative scenarios and several 

“sensitivity” analyses to inform how the MERM and EORM could vary under different plausible conditions.  

The three scenarios are “High Renewables Penetration,” “Storage Potential at the High Renewables 

Penetration,” and “Lower Equivalent Forced Outage Rate (EFOR)”.  The high renewable penetration 

scenario adds much more wind and solar generation to explore the implications of understating 

renewable penetration in 2024 (or beyond).  The storage scenario evaluates the economic potential for 

batteries using the renewable penetrations in the high renewable scenario. The Lower EFOR study uses 

the class average forced outage rate assumptions from the 2018 study to isolate the impact of more recent 

outage data.  The assumptions for each scenario are summarized in Table 5 below. 
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Table 5. Description of Modeled Scenarios 

Scenario Name Base Case Assumption Alternate Scenario Assumption Expected EORM Impact 

High Renewables 
Penetration 

Only include CDR-
eligible wind and solar 

from CDR 

Include some of the wind and 
solar from the interconnection 

queue that has not met all 
requirements for CDR (15 GW of 

new solar, 5 GW of new wind) 

Downward pressure on 
prices and therefore 

lower EORM 

Storage Potential 
at the High 
Renewables 
Penetration 

1,100 MW of battery 
storage 

Test various battery penetrations 
at MERM from the High 

Renewables Scenario 

 

Lower EFOR 
Last 3 years used to 

populate outage rates 
for all units 

Use class average EFORs from 
2018 study 

2018 modeled EFOR was 
lower, so the reversion 

will decrease EORM 

The other sensitivity analyses that we conducted, defined in Table 6, examine the impacts of: (a) varying 

the assumed cost of building new plants; (b) adjusting the value of lost load (VOLL)24; (c) adjusting the 

likelihood of recent weather years compared to historic values; and (d) varying the associated load 

forecast uncertainty not attributable to weather conditions.  

Table 6. Definition of Non-Modeled Sensitivities 

Sensitivity Base Case Assumption Sensitivity Range 

CONE $93.5/kW-year -25% / +25% 

VOLL $9,000/MWh $5,000 to $30,000/MWh 

Weighting of Historical 
Weather Years 

Equal probability assigned to all 
40 weather years 

Equal probability assigned to the last 

15 weather years 

Forward Period and Load 
Forecast Uncertainty 

4 years 0 years to 3 years 

 
24 Our VOLL sensitivity adjusts the VOLL but it does not adjust the ORDC, which is set by the Public Utility Commission 

of Texas based on the system-wide offer cap and not directly set based on customer VOLL.  Because the ORDC curve 

does not change, the VOLL sensitivity does not affect market prices and the MERM (which is solely based on market 

prices) does not change.  The EORM is affected because the higher VOLL implies customers place a higher value on 

avoiding loss-of-load events and therefore prefer higher reserve margins, all else equal.  

 



27 
 

D. MODEL VALIDATION 

In addition to carefully constructing realistic inputs to the model, we validated that the model’s outputs 

are reasonable by comparing them to real-world market observations. In the 2018 study, Astrapé and 

Brattle introduced calibration efforts to ensure modeled economic and reliability results corresponded to 

historical conditions. The approach primarily looked at Peaker Net Margin (PNM); careful tuning of the 

annual market price duration curve was not performed. Since the economics of the marginal resource 

were primarily influenced by hours where the market cleared above the dispatch cost of CTs, this was 

adequate. In the 2020 EORM study, hybrid battery and solar resources are a potential marginal resource, 

making the market prices throughout the year critical to the conclusions of this analysis. Also, the higher 

penetrations of renewable resources are expected to make low price conditions more impactful. For this 

calibration, a number of benchmarks were considered: 

• Market price duration curve 

• Monthly peak and off-peak pricing 

• Scarcity pricing timing, magnitude, and frequency 

The typical drivers of the market prices throughout the year are fuel prices, the underlying reserve margin, 

the resource mix and economic parameters of generators, and generator forced outage rates. Through 

the calibration process, a number of other drivers were identified including planned and maintenance 

outages, day ahead load and wind forecast error, and generator bidding strategies.  

An example of the outcome of the SERVM calibration for 2019 is shown below in Figure 3. The chart 

reflects the cumulative energy margin for CTs with a 10,000 btu/kwh heat rate. The historical load, 

renewable profiles, and generators were input into the model. The simulations were run for five iterations 

of random generator outages, market support, and day ahead forecast error. Planned and maintenance 

outages were modeled with historical averages rather than forcing exact 2019 conditions. The modest 

slope in most months of the years reflect limited energy margins for CTs when scarcity is not present in 

the market. The steep ramp during the summer reflects the historical and modeled scarcity conditions 

where market prices approached $9,000/MWh. Another period of increasing energy margins starting 

around hour 5,800 reflects September conditions when loads remained high, but maintenance and 

planned outages began to take place.  
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Figure 3. SERVM Energy Margin Calibration for 2019 

 

Not all years calibrated this well, but the intent of the process was not to force the model to replicate 

history but to understand how random drivers may influence market prices. In 2018 for instance, reserve 

margins were relatively low, but energy margins did not reflect significant scarcity. This was primarily 

driven by better than expected performance of conventional generation as shown in Table 7. 

Table 7. Average Megawatts Forced Offline for Modeled Versus Historical in Top 3 Load Days of 2018 

Date 
Modeled Forced Outages 

(MW) 

Historical from NERC 

Generating Availability Data 

System  

(MW) 

7/23/2018 3,231 2,272 

7/19/2018 3,383 1,891 

7/20/2018 3,041 2,141 

More distant history also did not calibrate as well. In 2011-2014, the modeled energy margins were mostly 

lower than those experienced in history. This may be due to the retirement of old generating capacity 

with high heat rates that may have set market prices for some hours in those years. Figure 4 below 

compares the simulated and historical CT net energy revenues for 2011 to 2019.   
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Figure 4. Modeled vs. Actual Combustion Turbine Net Energy Revenues 

 

Future enhancements to the commitment and dispatch practices in ERCOT were not captured in these 

simulations. Significant price reduction benefits of more advanced optimization have been quantified by 

the Independent Market Monitor for ERCOT.25 If these benefits are realized, the MERM would likely shift 

downward. 

 

  

 
25 See Puct 2019b. 
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III. RESULTS 

This section first presents the results of our study under base case assumptions, including the estimated 

2024 MERM and EORM and the associated reliability statistics, and then describes how the results could 

differ under alternative market conditions captured in the scenarios and sensitivities described above.  

This section explains why the MERM and EORM results differ with respect to the result from the 2018 

study. 

A. MARKET EQUILIBRIUM RESERVE MARGIN 

We describe here the anticipated equilibrium conditions under ERCOT’s current market design by: (1) 

estimating the market equilibrium for our base case assumptions and several sensitivity cases; (2) 

summarizing the volatility in realized prices and net revenues across reserve margins; and (3) describing 

the likely year-to-year variation in realized reserve margins. 

1. AVERAGE EQUILIBRIUM RESERVE MARGIN 

As described above, the MERM occurs at the level of capacity where the net revenues of new capacity 

from our simulations just equal the marginal costs of capacity, which is equal to CONE.  As shown in Figure 

5 below, CT net energy revenues tend to decrease with higher reserve margins due to lower energy prices 

and few scarcity hours that occur when there is additional supply available on the system.  We find that 

the MERM, where marginal costs of new capacity intersect with the marginal revenues for that capacity, 

is 12.25%. 

Figure 5. ERCOT Projected 2024 Market Equilibrium Reserve Margin 
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However, the single average MERM of 12.25% does not provide a complete story of the expected 

reliability of the ERCOT system or the expected revenues for new entrants.  In the remainder of this 

section we discuss the volatility in realized prices in our simulations and the year-to-year variability in the 

reserve margin.  In Section 0 we compare this market equilibrium to an economically optimal reserve 

margin, and in Section C we examine the sensitivity of our analysis to uncertainties in future market 

conditions. 

2. VOLATILITY IN REALIZED PRICES AND GENERATOR REVENUES 

Our estimate of the average MERM is strongly influenced by the assumed peak load and generator outage 

probability distributions, especially the most extreme scarcity events at the tails of those distributions.  As 

the reserve margin declines, these tails become more likely to produce scarcity resulting in high prices, 

high system-wide costs, and high generator margins. 

Figure 6 shows the range of annual energy prices (left) and marginal unit net energy revenues (right) for 

the base case across the reserve margins analyzed.26  The upper percentile curves show that prices and 

supplier margins in the tails of the distribution can be much higher in any given year than their median or 

overall weighted average values. 

Figure 6. Distribution of Spot Energy Prices (Left) and Net Energy Revenues for a Marginal Unit (Right)  

 
Note: Marginal Unit Net Energy Revenues represent net revenues from added CTs.  

The years reflected in the tails of the distribution have a substantial effect on the MERM.  For example, at 

the base case MERM value of 12.25%, we estimate that once per decade (90th percentile) energy prices 

would exceed $65/MWh (78% higher than the median price at this reserve margin).  Once every two 

 
26 Marginal Unit Net Energy Revenues represent net revenues from added CTs. 
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decades (95th percentile), prices would exceed $81/MWh (123% above the median price).  Similarly, new 

gas plant net revenues in the median year are only $62/kW-year, which is just 66.5% of CONE, but 

occasional high-priced years would elevate the average to CONE.  Assuming full exposure to spot market 

prices (i.e., no hedging) net revenues of marginal units would exceed $246/kW-year (about 2.6 times 

CONE) once in a decade (90th percentile) and $353/kW-year (about 3.8 times CONE) once every two 

decades (95th percentile).27 All simulation results reflect scarcity pricing rules that reduce the systemwide 

offer cap from $9,000/MWh to $2,000/MWh when net operating profit exceeds three times the cost of 

new entry (assumed at $93.5/kw-yr). 

3. YEAR-TO-YEAR RESERVE MARGIN VARIABILITY  

The uncertainty in future load growth can have significant impacts on reserve margins and reliability.  Our 

base case simulations assume that the market invests based on the expected load growth and resulting 

prices on a four-year forward basis.  However, realized load growth will generally differ from four-year 

expectations, resulting in a range of reserve margins that differ from the equilibrium reserve margins 

shown above. 

We simulate this effect by assuming alternative load growth projections based on the distribution of non-

weather forecast error in projecting future load, as described in Appendix 1.A.1 below.  Even if the four-

year-ahead planning reserve margin is exactly at the market equilibrium of 12.25%, realized shorter-term 

planning reserve margins can be higher or lower as load growth uncertainty resolves itself over the next 

four years.  The planning reserve margins projected going into each summer would thus vary around the 

equilibrium from 10.7% to 13.8% in 50% of all years and drop below 9.25% approximately once per decade 

(i.e., below the 10th percentile).  Once weather-related load fluctuations are considered as well, after-the-

fact realized reserve margins will vary even more substantially and will drop below 9.4% approximately 

once per decade (i.e., below the 10th percentile).  However, realized reserve margins, particularly the lows 

that largely reflect realized weather extremes, should not be compared to more familiar planning reserve 

margin benchmarks. 

Variability in reserve margins may be moderated by short lead-time resources (including switchable units, 

mothballs, uprates, and demand response) that can exit or enter the market as expectations change 

between four years forward and delivery.  By not simulating the effects of market exit and entry by short-

term resources, our results would tend to overstate the range of realized reserve margins.  However, our 

simulations do not account for the countervailing effects of additional supply-side uncertainties, such as 

unanticipated retirements, construction delays, and lumpiness in uncoordinated new entry, which would 

tend to increase the variability of reserve margins.  Furthermore, uncertainties about anticipated fuel 

prices, the capacity contribution of renewables, and other modeling assumptions would further widen the 

 
27 However, generators are generally not fully exposed to spot markets, since they hedge by selling most of their 
output in forward markets.  Forward prices reflect ex ante market expectations of all possibilities rather than spot 
realizations.  Selling forward dramatically smooths revenues closer to the expected values we estimate. 
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distribution of realized reserve margins.  Overall, we estimate that with a four-year forward period, load 

forecast uncertainty would result in equilibrium reserve margins ranging from 9.25% to 15.25% (10th to 

90th percentiles). 

4. COMPARISON TO 2018 STUDY RESULTS 

The 2018 study estimated a market equilibrium reserve margin for 2022 of 10.25%, which is 2.00 

percentage points lower than current base case results of 12.25%. There are several offsetting factors that 

result in a 2.00% net change in the MERM, shown in Figure 7 below. While changes in the ORDC and forced 

outage rate assumptions increase the MERM, these changes are somewhat offset by an increase in 

renewables, and a change to the reference technology from a blended CT and combined-cycle to just a 

CT. 

The largest drivers that had upward effects on the MERM are the higher ORDC, the higher forced outage 

rates for conventional generators, and renewable accounting procedures. The economic effects of higher 

renewable penetration and the composition of the reference technology reduced the MERM.  While 

sensitivity simulations were not performed to assess the implications for a change in reference technology 

to an alternative gas-fired technology, the small difference in capital costs between combined cycles and 

combustion turbines is likely slightly more than offset by the production cost savings of the more efficient 

technology. This likely contributes to a small reduction in the MERM. 

Since the base case uses the renewable accounting methodology applied in ERCOT’s CDR development 

process, any discrepancy between the renewable capacity in the CDR and the reliability contribution in 

the simulations will also affect the MERM. The largest discrepancy between the capacity credit for 

incremental resources was for wind resources. The net change in capacity credit for wind in the CDR 

between the two studies was 2,806 MW, while the reliability contribution of wind only changed by 1,142 

MW in the SERVM simulations. Offsetting this effect was the fact that storage resources were not given 

any capacity credit in the CDR, but in the simulations they did provide reliability value. The net effect of 

these accounting practices is a 1.00% increase in MERM. 
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Figure 7. Drivers of the Market Equilibrium Reserve Margin Change from 2018 to 2020 Study 

 
Given the MERM in this study is 2.00 percentage points higher than the MERM found in the 2018 study, 

intuition suggests that ERCOT would be more reliable at MERM now. However, since the one percentage 

point increase in forced outage rates and one percentage point renewable accounting impact do not 

correspond to reliability improvements, projected reliability actually stayed the same between the 2018 

study MERM and the 2020 study MERM. Absent the administrative boost to ORDC prices, reliability would 

have degraded at MERM. Since the effects reducing MERM are projected to escalate with additional 

renewable, it will be important to carefully monitor projected reliability going forward. 

B. ECONOMICALLY OPTIMAL RESERVE MARGIN 

1. SYSTEM COST-MINIMIZING RESERVE MARGIN 

The EORM is the level of capacity that minimizes total system capital and production costs.  As shown in 

Figure 8 below, we estimated the annual average of reliability-related costs over a range of planning 

reserve margins and found the EORM under base case assumptions to be 11.00%. 

At the lowest reserve margins analyzed, the average annual reliability costs are high, driven by the cost of 

firm load shedding (red bar), regulation and reserve scarcity (grey bars), and production costs of 

emergency and conventional resources.  As reserve margins increase, total reliability costs drop due to 

the decrease in scarcity events and production costs.  These costs decrease more quickly than the 

increases in capital costs associated with adding additional CTs resulting in a decrease in total system 

costs.  This continues at higher reserve margins until the “economically optimal” quantity of capacity has 
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been added at a reserve margin of 11.00%.  After crossing this minimum cost point, the capital costs of 

adding more CTs exceed the benefits from reducing reliability-related costs, so total costs increase. 

Figure 8. Total System Costs across Planning Reserve Margins 

 
Notes: 
 Total system costs include a large baseline of total system costs that do not change across reserve margins, including $13.4B/year 

in transmission and distribution (assumption not updated from 2018 study), $7.5B/year in external system costs, and $5.2B/year 
in production costs. 

The total cost curve shown above has a shape similar to those we have observed in value-of-service 

studies for many other electric systems.28  The curve is relatively flat near the minimum average cost point, 

indicating that expected total costs do not vary substantially between reserve margins of 10%–12%.  

However, the lower end of that range (10%) is associated with much more uncertainty in realized annual 

reliability costs, which we discuss in the next section, and a much larger number of severe, high-cost 

reliability events.  At the 12% reserve margin, a greater proportion of total annual costs is associated with 

the costs of adding new units (which has less uncertainty), and a smaller proportion of the average annual 

costs are from uncertain, low-probability, but high-cost reliability events.29 One notable difference from 

 
28 For example, see Poland (1988), p.21; Munasinghe and Sanghvi (1988), pp. 5–7 and 12–13; and Carden, 
Pfeifenberger, and Wintermantel (2011). 
29 Reliability across planning reserve margins is discussed in Section 1. 
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the components of the EORM curve is the smaller magnitude of production cost savings. Since CTs have 

relatively high dispatch costs, increasing penetration does not provide much incremental production cost 

savings. While there is significant capacity in ERCOT with dispatch costs higher than that of the marginal 

CT additions, the differential is dwarfed by the difference in costs between CTs and the emergency 

products. At the capacity factor of the marginal CTs of 9%, a cost differential of $8/MWh between the CT 

and an older gas generator would produce annual savings of only $6/kw-yr. In contrast, avoiding a single 

hour of firm load shed would provide $9/kw-yr. Since there are several emergency categories that are 

activated multiple times per year when the system reserve margin is near the EORM, the economic 

benefits of the CT are more concentrated in emergency savings than in production cost savings. 

At each reserve margin level in Figure 8, we show the weighted-average costs across all 10,000 annual 

simulations for several components of system costs that change with reserve margins.  We estimated 

each of the components of system costs based on the following assumptions: 

• Marginal CT Capital Costs are the annualized fixed costs associated with building CT 

plants at a cost of $93.5/kW-year in the Base Case. 

• Production Costs (Above $5.2 billion per year Baseline) are total system production costs 

of all resources above an arbitrary baseline cost of $5.2 billion.  We show only a portion 

of total system costs as an individual slice on the chart in order to avoid having production 

costs dwarf the magnitude of other cost components and subtract the same $5.2 billion 

at all reserve margins shown. Production costs decrease at higher reserve margins 

because adding efficient new gas CTs reduces the need to dispatch higher-cost peakers. 

• External System Costs (Above Baseline) include production and scarcity costs in 

neighboring regions above an arbitrary baseline, which drop by a small amount with 

increasing reserve margins because ERCOT will rely less on imports from high-cost 

external peakers during internal scarcity events, and may be able to export more supply 

during external scarcity events.30 

• Emergency Generation is the price-driven dispatch of units outputting at high levels 

above their summer peak ratings at an assumed cost of $1,372/MWh, see Appendix 1.E.3. 

• 10-Minute and 30-Minute ERS is the cost of dispatching these resources during 

emergency events at assumed costs of $2,469 and $1,372/MWh for 10-minute and 30-

minute ERS respectively, see Appendix 1.C.1. 

• Non-Controllable LR costs reflect the cost of administratively re-dispatching LRs from 

supplying Responsive Reserve Service (RRS) to supplying energy at a cost of $2,469/MWh 

during emergencies, see Appendix 1.C.2. 

 
30 The baseline level of external production costs is not included in our total system cost.  This differs from our 
reporting of ERCOT-internal production costs, for which we do include baseline costs (that do not vary with reserve 
margin) in order to produce a meaningful total cost estimate for the ERCOT system. 
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• TDSP Load Management costs are incurred when ERCOT administratively orders these 

demand-side resources to curtail during emergencies at an assumed cost of $2,469/MWh, 

see Appendix 1.E.2. 

• Price Responsive Demand costs are determined by the hourly market price in the hours 

during which the demand response occurred. 

• Spinning and Non-Spinning Reserve Scarcity costs are calculated as the area under the 

ORDC curve, calculated assuming load would be shed at X = 1,000 MW, see Appendix 

1.E.4. 

• Regulation Scarcity costs are calculated according to the Power Balance Penalty Curve 

(PBPC) assuming that this curve accurately reflects the marginal cost of running short on 

regulating reserves, see Appendix 1.E.5. 

• Firm Load Shedding costs are the customer costs imposed during load-shed events at a 

cost at the assumed VOLL of $9,000/MWh. 

2. EXPOSURE TO EXTREME SCARCITY EVENTS 

The economic results shown above assume risk neutrality with respect to the uncertainty and volatility of 

reliability-related costs.  Figure 8 compares total costs at different reserve margins as the probability-

weighted average of annual reliability costs for all 10,000 simulation draws.  However, there is substantial 

volatility around the average level of possible reliability cost outcomes.  Most simulated years will have 

very modest reliability costs, while a small number of years have very high costs.  These high-cost 

outcomes account for the majority of the weighted-average annual costs shown as the individual bars in 

Figure 8 above. 

Figure 9 below summarizes this risk exposure by comparing the weighted-average costs for different 

reserve margins (red line, which is equal to the height of the individual bars in Figure 8) to annual costs 

under the most costly possible outcomes, represented by the 75th, 90th, and 95th percentiles of annual 

reliability costs across all 10,000 simulated scenarios. 

Considering the higher-cost uncertainty exposure at lower reserve margins, some policymakers prefer 

reserve margins to exceed the risk-neutral economic optimum.  As the simulation results show, a several 

percentage point increase in the reserve margin would only slightly increase the average annual costs, but 

more significantly reduce the likelihood of experiencing very high-cost events.  Total average costs change 

by a relatively modest amount over a range of planning reserve margins (e.g., average system costs 

increase by just $5 million with an increase in reserve margin from 10% to 15%).  However, lower planning 

reserve margins have a significantly larger uncertainty in reliability costs and the likelihood of high-cost 

outcomes than can be encountered in any particular year.  For example, at a 7% reserve margin, costs are 
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expected to be $2.2 billion higher than average once every ten years, while at 11% they would increase 

with a similar frequency by $1.2 billion.31 

Figure 9. Year-to-Year Possible Realizations of Total Annual System Costs 

 
Notes: 
 Total system costs include scarcity-related and production costs (that decrease with reserve margin), generation capital costs 

(that increase with reserve margin), and T&D costs (which remain constant across reserve margins.  Additional detail on the 
individual components of total system costs is available in Section 1. 

C. SYSTEM RELIABILITY 

In this section, we compare the expected reliability of the market equilibrium reserve margin to traditional 

reliability metrics. 

1. PHYSICAL RELIABILITY METRICS 

At a market equilibrium reserve margin of 12.25% ERCOT can expect a probability-weighted average of 

0.5 loss-of-load events (LOLE) per year.  Our simulations find that there is likely to be a loss-of-load event 

about every two years in the range of 1,541 MW of load being shed for 2.9 hours on average, for a total 

expected unserved energy of 4,507 MWh.32  Such events would be more frequent, longer, and deeper at 

lower reserve margins and less so at higher reserve margins. Figure 10 depicts how three physical 

 
31 These values are calculated as the difference between the weighted average and 90th percentile total system 
costs at 7% and 11% reserve margins. 
32 Load, duration, and energy are calculated for each firm load shed event which occurs approximately once every 
two years. The LOLH and EUE in Figure 10 are annual metrics. 
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reliability metrics vary with reserve margin: (1) LOLE on the left; (2) loss of load hours (LOLH) in the middle; 

(3) Normalized Expected Unserved Energy (EUE) on the right.33 

Figure 10. Reliability Metrics that Vary with Reserve Margins 
        (a) LOLE                                             (b) LOLH                                                      (c) EUE 

 
Notes: Reflects Base Case assumptions, including 4-Year Forward LFE, and equal weather weights of all 40 weather years. 

Table 8 shows the same information in tabular form, along with additional information describing the 

magnitude of outage events when they occur. 

 

 

 

 

 

 

 

 
33 For our simulations, the reported reliability metrics are the mean for 10,000 simulations (40 weather years, 5 load 
error levels, 50 outage draws).  A LOLE event is recorded for each day with at least one hour of lost load.  LOLH is 
calculated as the total hours in the simulation with lost load, without accounting for persistence of a particular 
outage event.  Normalized EUE is calculated as the expected quantity of unserved energy over the year divided by 
the net energy for load multiplied by 1,000,000.   
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Table 8. Detailed Reliability Metrics across Planning Reserve Margins in Base Case 

Reserve 
Margin 

Total Annual Loss of Load Average Outage Event 

LOLE LOLH EUE Duration Energy Lost Depth 

(%) (events/yr) (hours/yr) (MWh) (hours) (MWh) (MW) 

4% 17.61 79.45 209,338 4.51 11,890 2,635 

5% 11.41 48.76 120,154 4.27 10,532 2,464 

6% 7.39 29.93 68,964 4.05 9,329 2,304 

7% 4.79 18.37 39,583 3.83 8,264 2,155 

8% 3.10 11.27 22,720 3.63 7,320 2,015 

9% 2.01 6.92 13,040 3.44 6,484 1,885 

10% 1.30 4.25 7,485 3.26 5,744 1,762 

11% 0.84 2.61 4,296 3.09 5,088 1,648 

12% 0.55 1.60 2,466 2.92 4,507 1,541 

13% 0.35 0.98 1,415 2.77 3,992 1,441 

14% 0.23 0.60 812 2.62 3,536 1,348 

15% 0.15 0.37 466 2.49 3,132 1,260 

16% 0.09 0.23 268 2.35 2,775 1,179 

17% 0.06 0.14 154 2.23 2,458 1,102 

18% 0.04 0.09 88 2.11 2,177 1,031 

Most US areas set reliability metrics on the “1-in-10” standard, i.e., a probability-weighted average of 0.1 

loss-of-load events (LOLE) per year.34  Under base case conditions a 15.75% reserve margin would be 

required to achieve 0.1 LOLE, which is 3.5 percentage points higher than MERM.  

All of the reliability metrics shown above reflect the average over many possible outcomes at a given 

reserve margin.  Average statistics provide a convenient summary of a large amount of data, but they can 

obscure the wide distribution of possible outcomes around the average, as shown in the sections above.  

Realized reliability in any given year will depend strongly on the weather and on generation availability. 

To illustrate the distribution of possible outcomes, Figure 11 below shows how reliability varies with 

weather, as measured by the annual expected unserved energy.  The teal bars show the total MWh of 

load shed during each of the 40 weather years for the Base Case simulations at a 12.25% reserve margin 

corresponding to the market equilibrium reserve margin.  The reoccurrence of 2011 weather conditions 

could lead to almost 17,080 MWh of expected involuntary curtailment of firm load, far above the equal-

probability-weighted average of 2,171 MWh over all 40 years depicted by the blue horizontal line.  By 

contrast, 25 out of the 40 years have much milder weather, with substantially less load shed than the 

average.  Thus, the actual reliability will vary.  In addition, the expected value of reliability would differ if 

 
34 LOLE standards refer only to loss-of-load events due to shortages of bulk power supplies. Customer outages caused 
by disturbances on distribution infrastructure are much more frequent and longer in duration.    
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different probability weights were assigned to the various weather patterns, as discussed in the next 

section. 

Figure 11. Expected Unserved Energy by Weather Year at 12.25% Reserve Margin 

  
Notes: Figure reflects Base Case 4-Year forward LFE assumption and the Base Case equal weather weight for all 40 years. 

2. EMERGENCY EVENT FREQUENCY 

Figure 12 summarizes the frequency of six types of emergency events for the base case simulations as a 

function of the reserve margin. The emergency events, in increasing order of severity, are: (1) the 

economic dispatch of emergency generation (red line); (2) calling 30-minute ERS (dark gray line); (3) calling 

TDSP load curtailments (dark blue line); (4) re-dispatching LRs from RRS to energy (light gray line); (5) 

calling 10-minute ERS (light blue line); and, finally, (6) shedding firm load (light red line).  As shown, at a 

15.75% reserve margin corresponding to 1-event-in-10-years (0.1 LOLE), emergency generation would be 

dispatched approximately one time a year on a weighted-average basis across all simulated years.  At a 

reserve margin of 8.5%, the system faces two load shed events per year on average, most years without 

load shed events and some years with several.  At the same 8.5% reserve margin, the various types of 

demand resources would have to be called from two to four times on average each year (depending on 

the resource type), and emergency generation would be dispatched approximately nine times on average 

each year.  At the market equilibrium reserve margin of 12.25%, emergency generation would be 

dispatched about three times on average per year, and other demand resources would average about one 

time per year. 

All types of emergency events become more frequent at lower reserve margins, but the frequency of load 

shed and emergency generation decline faster than several of the other categories of emergency events. 

Some of the emergency products in ERCOT are summer-only so any reliability events that occur in non-

summer months will only entail emergency generation and load shed. 
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Figure 12. Average Annual Frequency of Emergency Events 

 
 Notes: Results from Base Case (4-Year Forward LFE, equal weighting of weather years). 

 Inflections in the series data reflect the fact that some emergency procedures are not available in all seasons or they  
have other call constraints. 

D. SENSITIVITY OF MARKET EQUILIBRIUM RESERVE MARGIN TO STUDY ASSUMPTIONS 

If investors have different beliefs about load and other factors affecting revenues, or if they face different 

costs, the MERM could differ from our estimates.  Here we examine several important uncertainty factors 

affecting the MERM, including: (1) the amount of intermittent renewable generation installed; (2) the 

reference technology moving to four-hour battery storage; (2) the forced outage rate of conventional 

generators; (3) the assumed cost of building new natural gas-fired plants; (3) the value of lost load; (4) the 

assumed probabilities of the historical weather years used to model hourly loads and renewable 

generation; (5) and load forecast uncertainty.  

Changing the values for these variables over a plausible range results in market equilibrium reserve 

margins ranging from 10.25% to 13.25%.  The actual uncertainty could be even wider, however, when 

considering other possibilities such as extreme weather events, broader distributions of intermittent 

renewable generation coinciding with the highest load years (rather than always taking the 2011 wind 

patterns with 2011 loads, for example), or different beliefs about future market and regulatory conditions.  

This range of equilibrium reserve margins would produce a range of reliability outcomes, which we 

estimate to be 0.32 to 1.17 LOLE. 
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1. RENEWABLES PENETRATION SCENARIOS 

The base case analysis assumes 37.4 GW of wind and 16 GW of solar online by 2024, based on the existing 

fleet and planned resources that have met the criteria to be included in the CDR.  Our alternative “High 

Renewables” scenario adds wind and solar capacity that has not yet met all the requirements to be 

included in the May 2020 CDR, resulting in an additional five GW of wind and 15 GW of solar.   

All else equal, adding renewable generation would decrease prices; but lower prices should force out 

conventional generation, until the market re-equilibrates at approximately the same reserve margin.  

However, we do estimate that equilibrium reserve margins would decrease slightly with higher renewable 

penetration because the net load duration curve becomes steeper.  A steeper net load duration curve 

causes prices to fall faster from the peak hour.  That would reduce generators’ net revenues, so reserve 

margins have to tighten slightly to re-equilibrate, with a slight increase in high-priced ORDC hours. As 

discussed in the Executive Summary, the load shape impact of increasing renewables is becoming 

significant given projected 2024 penetrations. Solar capacity additions to date have not materially 

steepened the net load shape since solar afternoon output has not reduced the net load below the load 

after sunset. Once the net load in late afternoon hours is below the post-sunset net load, subsequent 

additions of solar will make the net load much steeper late in the day. This steep net load shape means 

that few hours will be close to the daily peak load, and correspondingly few hours will be close to the 

annual peak load. In the 2018 study, the High Renewables scenario reduced the MERM by 1 percentage 

point. In this study, a commensurate 20 GW increase in renewable capacity reduces the MERM by 2.00 

percentage points, as illustrated in Figure 13.    

Figure 13. Market Equilibrium Reserve Margin Sensitivity to Renewable Penetration 
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2. STORAGE POTENTIAL AT THE HIGH RENEWABLES PENETRATION  

The net load shape effect of increasing renewable resources provides an opportunity for short duration 

resources to provide capacity value. The area under the net load curve during peak days that could be 

served by four-hour duration resources increases from the penetration expected in the base case in 2024 

to a higher renewable scenario which includes an additional 15 GW of solar capacity.  An illustration of 

this shift is shown in Figure 14. It is important to note that the 2024 base case net load shape has many 

hours near the daily peak which results in limited opportunity for short-duration batteries to provide 

energy arbitrage. It was for this reason that we only studied battery potential for a high renewable 

scenario. 

Figure 14. Net Load Shape Impact of Solar Generation 

 

To quantify the capacity of storage that can contribute to reliability, the area under each net load curve is 

analyzed. The area under the series labeled ‘Gross Load Minus Wind’ within one GW of the daily net load 

peak is approximately 1.6 GWh. This means that one GW of load can be served reliably with 1.6 hours of 

energy from a battery resource. Within two GW of the daily net load peak a longer duration is required 

and that area represents 2.1 hours of energy. Figure 15 contains a visual illustration of this example. The 

area under the curve for the ‘Gross Load Minus Wind’ series at four-hours of duration corresponds to 

8,000 MW of capacity and is shown as the far left point on Figure 16.  
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Figure 15. Battery Storage Duration Analysis Example 

 
Performing this calculation for a wide range of solar penetrations yields the remaining points on this 

series. Initial incremental solar flattens the net load shape, reducing the potential for storage to supply 

reliability to ERCOT. At approximately 30 GW of total solar penetration, the net load shape begins to 

steepen and storage potential begins to increase. In the high renewable penetration scenario (additional 

15 GW of solar and 5 GW of wind added to the system) analyzed, approximately 10 GW of four-hour 

battery storage has the potential to supply reliability value to ERCOT. 

Figure 16. Storage Potential to Contribute to Reliability 

 

High Renewable 
Penetration 

Scenario 
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Example charging and discharging schedules, in Figure 17, illustrate the flatness or steepness of the 

respective daily load shapes under different solar penetrations. 

Figure 17. Storage Charging Potential 

 

Since the load shape in the 2024 Base Case did not support significant incremental short duration storage 

capacity, all economic analysis of batteries was performed with the portfolios from the 2024 High 

Renewable scenario. The economic opportunity quantified in the following sections would be lower for 

batteries in the Base Case although the magnitude of the difference was not quantified.  

The economic opportunity for battery storage is limited by the daily arbitrage opportunity throughout the 

year. The significant penetrations of renewable resources in ERCOT create frequent low market price 

hours where most conventional generation is either turned off or dispatched near minimum. During these 

periods, renewable generation can even be curtailed. The bidding strategies of renewable generator 

owners may entail bidding at negative prices since they have a financial incentive in terms of tax credits 

to continue to produce. Batteries are able to charge during these periods and capture significant arbitrage 

opportunities. To assess the potential for batteries to earn an economic return in future high renewable 

scenarios, the bidding behavior of these resources must be modeled. The historical relationship between 

curtailment and the average minimum zonal price is reflected in Figure 18.  
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Figure 18. Historical Relationship Between Curtailment and the Average Minimum Zonal Price 

 

Unfortunately the behavior is likely influenced by penetration and composition of renewable resources 

that will be on the system in the future and extrapolating from historical relationships is challenging. 

Assuming that market prices in these low net load periods will continue to be correlated to system 

renewable curtailment, the historical relationship was modeled in SERVM. A sensitivity reflecting 

moderation of negative pricing bidding strategies demonstrated that energy margins for battery resources 

could decline by 10%. 

Even with frequent negative pricing, the economic arbitrage opportunity is still limited and declines as the 

penetration of storage increases. On days in which combined-cycle generators are on the margin in low 

load hours and CTs are on the margin in high load hours, the arbitrage opportunity is less than $10/MWh 

with gas prices below $3/MMBtu. Simulations of mild weather years with a reserve margin near MERM 

suggest energy arbitrage opportunities over the course of the year approaching $30/kw-yr. After inclusion 

of ancillary service market opportunity and scarcity pricing periods, the economic margins of the first 

tranches of energy storage exceed those of marginal CTs, but decline as the penetration increases. As 

shown in Figure 19, with capital carrying costs of $147/kw-yr, the economic potential for batteries at the 

high renewable penetration is only 2,100 MW, and approximately 1,100 MW of batteries is already 

expected to be in the system in 2024. This opportunity also presumes that other conventional resources 

would economically retire to maintain the system reserve margin near MERM. Otherwise, if reserve 

margins increased with increasing penetration of storage, returns would drop much faster. If battery 

capital costs decline to $115/kw-yr, up to 6.5 GW of incremental 4-hour battery capacity could be 

economic at the high renewable penetration. 
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Figure 19. Storage Charging Potential at the High Renewable Penetration 

 

3. COST OF NEW ENTRY SENSITIVITY 

The base case simulations assume that a natural gas-fired CT is the marginal resource with industry 

standard assumptions for capital costs.  However, industry experience suggests that there is a range of 

uncertainty around technology cost estimates.   

Figure 20 shows the impact of varying CONE from −25% to +25% relative to our base assumptions.  The 

base case CONE estimate was adapted from a Brattle Group study from 2018.35 A more recent report from 

Lazard gives a range of estimates for installed capital costs with a lower end of $700/kW.36 This is 

approximately 22% lower than the comparable installed cost in the Brattle report. Accordingly, we 

selected a range of -25% to +25% relative to our base assumptions. Overall, the MERM could vary over a 

range of 11.25% to 13.25% depending on the range of CONE uncertainty. 

 

 

 

 

 
35 See Newell, et al. (2018 a) 
36 See Lazard (2020) 
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Figure 20. Market Equilibrium Reserve Margin Sensitivity to Cost of New Entry 

   

 

4. PROBABILITY WEIGHTING OF WEATHER SENSITIVITY 

The high impact of weather on net energy revenue means that different weather expectations will 

influence the market equilibrium reserve margin.  The base case assumes equal probability for all 40 

weather years because 40 years should be a sufficient sample of the underlying distribution, assuming 

that distribution is representative of future weather patterns.  This reliance on long history is consistent 

with the EORM Manual.  However, more recent weather has, on average, been hotter (especially in 2011) 

and may be assumed to be more representative of future weather, as discussed in Section D above.  

Assuming accordingly that each of the last 15 weather years has a 6.66% chance of reoccurring (with 0% 

weight on each of the prior 25 years) leads to higher simulated prices and reliability events at a given 

reserve margin; but the higher prices would attract more investment, resulting in a 1% higher market 

equilibrium reserve margin of 13.25%.  With that higher MERM protecting against the effects of hotter 

weather, the simulated reliability is approximately the same as in the base case. 

5. FORWARD PERIOD AND LOAD FORECAST UNCERTAINTY SENSITIVITY 

In our base case analysis, we assume that all future supply decisions must be locked in four years in 

advance, approximately consistent with the lead time needed to construct new natural gas-fired 

generation resources.  However, unlike weather-related load uncertainty, non-weather load forecasting 

error (LFE) increases with the forward period.  The forward period may increase if investors require a 

longer planning period and decrease if there are significant short-term resources (such as demand 

response, switchable units, mothballed units, and even renewable resources) to respond more quickly to 
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market conditions than traditional new builds.  Depending on the expected forward periods the market 

equilibrium will vary from 11.25% to 12.25%. 

6. SUMMARY OF SENSITIVITIES 

Our estimate of the MERM is sensitive to a number of study assumptions as explained in previous sections, 

and summarized in Figure 21 and Table 9.  As shown in the table, the MERM is between 10.25% and 

13.25% for all sensitivities. 

The change in the VOLL is not considered to shift the operating reserves demand curve (ORDC) and will 

not affect the MERM.37  Moving from a four-year LFE forward period to no forward period reduces the 

MERM by one percentage point. Each one-year increase in the forward period increases the MERM by 

0.25%. Weighting more recent weather years more heavily increases MERM since recent data exhibits 

higher loads on average. And the effects of CONE pricing are symmetrical, but even a reasonably large 

shift of 25% only moves MERM by one percentage point. 

Figure 21. Sensitivity of the Market Equilibrium Reserve Margin to Study Assumptions 

 
Notes: Varying the VOLL is not shown because it does not affect the MERM.  

 

 
37 The ORDC is discussed in Appendix 1.E.4; varying the VOLL to range from $5,000 to $30,000 changes the EORM to 
range from 10.25% to 13.25%, respectively. 
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Table 9. Sensitivity of the Market Equilibrium Reserve Margin to Study Assumptions  

Scenario/Sensitivity 

Market 
Equilibrium 

Reserve Margin 
(%) 

Base Assumptions Low/High Sensitivity 

Base Case 12.25   

Vary CONE 11.25 – 13.25 $93.5/kW-yr $70.1 - $116.9/kW-yr 

Vary VOLL 12.25 $9,000/MWh $5,000-$30,000/MWh 

Vary Probability of Weather 
Years 

13.25 
Equal probability to 
all 40 weather years 

Equal probability to 
last 15 weather years 

Vary Forward Period and Load 
Forecast Uncertainty 

11.25 – 12.00 4 years 0 years to 3 years 

High Renewables Scenario  10.25 
May 2020 CDR 
values for 2024 

study year 

15 GW of new solar 
and 5 GW of new 

wind 

Lower EFOR 11.25 
Last 3 years to 

populate outage 
rates for all units 

2018 study class 
average EFORs 

Notes: Varying the VOLL does not affect the MERM.   
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IV. DISCUSSION OF RESULTS 

As shown in Table 10, the reported MERM from the 2018 study increased from 10.25% to 12.25%, but the 

increase is associated with forced outage rate changes and reserve margin reporting artifacts which do 

not translate to improvements in reliability. The base case in this study, as in the 2018 study, projects 0.5 

LOLE days per year, a level 5 times higher than the industry standard of 0.1 LOLE. If renewable 

deployments continue to increase to the level in the high renewable scenario analyzed, firm load shed 

frequency will rise 160% to 1.3 days per year. This high renewable scenario demonstrates a MERM of 

10.25%. Since further renewable penetration increases have a more dramatic impact on the shape of the 

net load curve, the impact on MERM will escalate, further reducing reserve margins and increasing the 

frequency of reliability events. 

Table 10. MERM and Reliability Comparison Between Scenarios  

Scenario MERM 
Reliability at MERM 

(LOLE in Days per Year) 

2018 Study 10.25% 0.5 

2020 Study 12.25% 0.5 

2020 Study, High Renewable 10.25% 1.3 

However, other factors, which have in recent history mostly resulted in realized reserve margins in ERCOT 

above MERM, may continue to exert an influence on reserve margin levels. Renewable resource 

investments motivated by alternate economic or other decision criteria have continued to be added at a 

pace that maintains a reserve margin above the market equilibrium even after economic retirements are 

accounted for. Storage deployment costs have dropped dramatically in recent years and after 

consideration of current and potential governmental incentives for storage devices, may support 

significant investment and result in the continuation of reserve margins that support high levels of 

reliability. However, the design of an energy-only market does not inherently protect system reliability. 

Future reserve margin studies will continue to analyze the implications of not only marginal conventional 

technology, but also the interactions of all resource classes and other market conditions that may result 

in realized reliability higher than projected by MERM. 

In addition to highlighting the potential market and reliability outcomes of the ERCOT system, this report 

has provided information on the impact of accounting treatment of renewable resources. While the 

reserve margin is primarily only a reporting indicator, it can communicate the wrong message with respect 

to reliability if the disconnect between capacity credit and reliability contribution continues to grow. In 

fact, if current CDR accounting was applied to the high renewable scenario, the reported MERM would 

rise to 19.25%, even though the projected reliability for this scenario is 160% worse than that of the base 

case. In order to provide market participants with the most meaningful information, it is important that 

the reliability contribution calculations and capacity accounting be synchronized. 
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The results presented throughout this report consider a range of possibilities for a number of uncertain 

variables.To the extent history provides guidance for the distribution of uncertainty, rigorous analysis was 

performed to quantify it. Load shapes, renewable output profiles, and generator outages all have histories 

that give reasonable representations for how the future may materialize.   
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LIST OF ACRONYMS 
 

4CP Four Coincident Peak 

ATWACC After-Tax Weighted Average Cost of Capital 

AEO Annual Energy Outlook 

CC Combined Cycle 

CDR Capacity, Demand, and Reserves (report) 

CONE Cost of New Entry (Gross) 

CT Combustion Turbine 

EFOR Equivalent Forced Outage Rate 

EE Energy Efficiency 

EORM Economically Optimal Reserve Margin 

ERCOT Electric Reliability Council of Texas 

ERS Emergency Response Service 

EUE Expected Unserved Energy 

GADS Generation Availability Data System 

HCAP High System-Wide Offer Cap 

HVDC High Voltage Direct Current 

LCAP Low System-Wide Offer Cap 

LFE Load Forecast Error 

LTRA Long-Term Reliability Assessment 

LOL Loss-of-Load 

LOLE Loss-of-Load Event 

LOLH Loss-of-Load Hour 

LOLP Loss of Load Probability 

LRs Load Resources 

MERM Market Equilibrium Reserve Margin 

MW Megawatt(s) 

NERC North American Electric Reliability Corporation 

ORDC Operating Reserve Demand Curve 

PBPC Power Balance Penalty Curve 

PNM Peaker Net Margin 

PRD Price Responsive Demand 

PUCT Public Utility Commission of Texas 

PUN Private Use Network 

RRS Responsive Reserve Service 

SCED  Security Constrained Economic Dispatch 

SERVM Strategic Energy Risk Valuation Model 
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SWOC System-Wide Offer Cap 

TDSP Transmission/Distribution Service Providers 

VOLL Value of Lost Load 

VOM Variable Operations and Maintenance 
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APPENDIX 1: MODELING ASSUMPTIONS 

This Appendix describes in more detail the representation of the ERCOT system, including: load and 

weather patterns and their probabilistic variations; the cost and performance characteristics of ERCOT’s 

generation and demand-response resources; the mechanics of the ERCOT energy and ancillary services 

markets, including a unit commitment and economic dispatch of all generation resources, demand-

response resources, and the transmission interties with neighboring markets.  We also explain 

assumptions developed to reflect expected conditions of 2024 on the generation fleet, demand-response 

penetration, fuel prices, and energy market design. 

A. DEMAND MODELING  

This section describes the data and modelling of the demand in the model, specifically peak load, weather 

uncertainty, non-weather forecast uncertainty, and demand shapes. 

1. PEAK DEMAND AND REGIONAL DIVERSITY  

 The peak load forecast normalizes for weather by identifying a 50th percentile peak load (“50/50”) forecast 

for each weather zone. The 50/50 peak load for each weather zone represents the average peak load from 

40 synthetic load profiles, each representing the expected load in a future year given the weather patterns 

from each of the last 40 years of history.  To develop a system 50/50 peak load forecast, the load in each 

weather zone must be identified at the time of the system peak.  To do so, an average load duration curve 

is constructed for each weather zone by averaging each hour of the load duration curves from 40 years of 

historical data.  Then, the zonal load duration curves are mapped to a single historical year.  The single 

historical year ERCOT uses for the 2020 CDR is 2008 because it was a generally “normal” weather year.  

The mapping is completed by identifying the peak load hour in 2008 and setting its load to the peak load 

from the average zonal load duration curve. Then the second highest load hour in 2008 is assigned the 

second highest load in the average zonal load duration curve. This continues until all of the hours in 2008 

are assigned a load level based on their rank and the equivalent load at that rank in the average load 

duration curve. The resulting hourly load profile constructed for each zone is then used to aggregate the 

individual zonal loads into the system peak load.   

However, 2008 experienced less peak diversity between weather zones than ERCOT normally experiences.  

Expressing the “50/50” peak from the many years of historical data using 2008 as a base shape therefore 

understates typical load diversity and may overstate the 50/50 system peak load.  It results in a 82,982 

MW system peak load rather than 81,793 MW 50/50 peak when using the median system peak across the 

study years (1980–2019).38 For the purposes of this study, this is only a reporting issue and does not affect 

the underlying hourly weather patterns and loads used in our simulations.  It does cause the EORM and 

 
38 Provided by ERCOT staff. 
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MERM to appear lower than they would if expressed against a 50/50 peak load using typical diversity, by 

about 1.4% (since the reserve margin is expressed relative to a 83 GW reported peak load when the actual 

50/50 corresponding to the same underlying data may be closer to 82 GW). 

2. DEMAND SHAPES AND WEATHER UNCERTAINTY MODELING  

We represent weather uncertainty in the projected ERCOT 2024 peak load by modeling 40 load forecasts 

based on 40 historical weather years from 1980–2019, as summarized in Figure A1-1.39  ERCOT staff used 

these 40 weather years as inputs into its 2020 load forecasting model, which produced the range of hourly 

load forecasts for 2024 we used in the SERVM model for this study.40  

The left chart shows projected 2024 peak load for each weather year relative to the weather-normal peak 

load.  The chart illustrates asymmetry in the distribution of peak loads, with the highest projected peak 

load (based on 2011 weather) at 3.9% above the weather-normal peak loads, compared to a peak load in 

the mildest weather year that is only 5.9% below weather-normal peak load. 

The right chart in Figure A1-1 shows the 2024 load duration curves for the 250 highest-load hours in each 

of the 40 weather years.  The light blue load duration curve is based on the extreme and extended hot 

summer weather in 2011.  As shown, the entire load duration curve from 2011 weather is far above all 

other weather years in the top 250 hours.  This extreme heat resulted in a number of emergency events 

and price spikes during the summer of 2011, which is described by some as a 1-in-100 weather year.  

Despite this, our base case assigns equal probability to all 40 weather years because the sample set is large 

enough to be reasonably representative of weather patterns.  We also report the MERM and EORM under 

an alternative weather weight of equal probability of the last 15 years.  

 

 

 

 

 

 

 
39 This is different than the previous EORM study, which used 38 weather years (1980–2017). 
40 Details on the load forecast model methodology in ERCOT (2019a). 
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Figure A1-1. ERCOT Peak Load (Left) and Peak Load Duration Curve (Right) by Weather Year 

     
Sources and Notes: ERCOT load shapes provided by ERCOT staff. 

3. NON-WEATHER DEMAND FORECAST UNCERTAINTY AND FORWARD PERIOD  

Forward-looking “planning” or “target” reserve margins differ from actually-realized reserve margins 

because both realized peak load and actual available resources can differ from projections.  One cause of 

forecast error is simply the weather.  Another is due to uncertainties in population growth, economic 

growth, efficiency rates, and other factors.  These non-weather drivers of load forecast errors (LFEs) differ 

from weather-related LFEs because they increase with the forward planning period, while weather 

uncertainties will generally remain constant and be independent with the forward period.   

As shown in the left chart of Figure A1-2, we assume that non-weather LFE is normally distributed with a 

standard deviation of 0.43% on a 1-year forward basis, increasing by 0.66% with each additional forward 

year.41  The distribution includes no bias or asymmetry in non-weather LFEs, unlike the weather-driven LFE 

in ERCOT, which has more upside than downside uncertainty. 

For our purposes, the relevant forward period for characterizing non-weather LFEs is the period at which 

investment decisions must be finalized.  We assume investment decisions must be finalized four years 

prior to delivery, consistent with the approximate construction lead time for new generation resources.  

This means that available supply and the expected planning reserve margin are “locked in” at four years 

forward, and the realized reserve margin may differ substantially as both weather and non-weather 

uncertainties are resolved as the delivery year approaches.  The right-hand chart of Figure A1-2 shows the 

five discrete levels of LFE we model, equal to 0%, +/−2%, and +/−4% above and below the forecast.  The 

 
41 This assumed LFE is a standard assumption that we developed in lieu of any ERCOT-specific analysis, which would 
require either a longer history of load forecasts in ERCOT or a new analysis developed out of ERCOT’s peak load 
forecast, neither of which are currently available.  
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largest errors are the least likely, consistent with a normal distribution.  We also conduct a sensitivity 

analysis, examining the implications on economically optimal and reliability-based reserve margins if the 

forward period is varied between zero and four years forward. 

Figure A1-2. Non-Weather Load Forecast Error 

 

4. EXTERNAL REGION DEMAND 

We independently developed external regions’ peak load and load shapes based on publicly-available peak 

load projections, historical hourly weather profiles, and historical hourly load data.  Table A1-1 summarizes 

the peak load for the ERCOT system and the load diversity relative to the interconnected neighboring 

regions.  Consistent with the peak load reporting conventions used in ERCOT’s CDR report, these peak 

loads are reported: (a) net of anticipated load reductions from price-responsive demand (PRD) and load 

resources (LRs); and (b) prior to any potential reductions from transmission and distribution service 

provider (TDSP) load management or energy efficiency (EE) programs.42 

 

 

 

 

 

 
42 See May 2020 CDR in ERCOT (2020a). 
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Table A1-1. Peak Loads and Diversity Used in Reserve Margin Accounting 

  
Sources and Notes: 

Non-Coincident Peak represents each individual region’s peak load. 
Coincident Peak represents the load in each region at the maximum total model area peak. 
At ERCOT Peak represents the load in each region at the time of the ERCOT system peak. 
SPP 50/50 peak load forecast is from the NERC 2019 Long-Term Reliability Assessment.43 
Entergy’s 50/50 peak load forecast is from the MISO Planning Year 2020-2021 Loss of Load Expectation Study Report. 44 
Load shapes in SPP and Entergy are based on our independently-developed statistical relationship between hourly weather and load 
estimated over five years of load data and 40 years of weather data.45 
Mexico’s peak load and load shape were unavailable.  The peak is assumed at a 15% reserve margin above the 
currently-installed generation fleet). Load shapes in Mexico are assumed identical to those in ERCOT.  

As shown in the table above, there is a substantial amount of load diversity between ERCOT and the 

neighboring systems, indicating that ERCOT may have access to substantial import quantities during 

shortages to the extent that sufficient intertie capability exists.  For example, at the time of ERCOT’s peak 

load, SPP load is likely to be at only 90% of its own non-coincident peak load. This load diversity results in 

having more than 11,500 MW of excess generation available for export in hours where ERCOT is shedding 

firm load.  However, most of these excess supplies will not be imported because ERCOT is relatively 

isolated from neighboring systems with only 820 MW of intertie capability with SPP and 400 MW with 

Mexico. 

 

 
43 See NERC (2019). 
44 See MISO (2019). 
45 See FERC (2020) and NOAA (2020). 
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B. GENERATION RESOURCES 

We model the economic, availability, ancillary service capability, and dispatch characteristics of all 

generation units in the ERCOT fleet, using unit ratings and online status consistent with ERCOT’s May 2020 

CDR report.  In this section we describe our approach for modeling conventional generation, private use 

networks (PUNs), and intermittent wind and solar.  We also describe the assumed cost and technical 

specifications of the CT reference technology. 

1. MARGINAL RESOURCE TECHNOLOGY 

The quantity of installed generating capacity must vary to simulate ERCOT’s system costs, market prices, 

and reliability across different reserve margins.  We add gas CT plants in our base case, roughly reflecting 

the types of capacity resources that have been added or proposed for the ERCOT market.  Our technology 

choices for the gas CT plants is consistent with assumptions from the 2018 study.  

The costs and performance characteristics of the reference CT are summarized in Table A1-2 and Table 

A1-3 respectively.  These characteristics are based on GE 7HA technology for the CT plants, which is the 

same as the CT reference technology from EORM 2018.46  We use updated cost of new entry (CONE) 

assumptions consistent with this technology, as well as an updated after-tax weighted-average cost of 

capital (ATWACC) for a merchant developer based on current financial market conditions.  These updates 

result in an estimated CONE of $93,500/MW-year for the gas CT, which is 5.65% higher than in EORM 

2018, as shown in Table A1-2. 

Table A1-2. Cost of New Entry 

 ATWACC CONE 

 Simple Cycle Combined Cycle 
 (%/yr) ($/MW-yr) ($/MW-yr) 

From 2018 Study (2022 Online Date) 
Low: Base Minus 10% n/a $79,700 $85,100 

Base: Merchant ATWACC 7.80% $88,500 $94,500 
High: Base Plus 25% n/a $110,600 $118,100 

Updated Estimate (2024 Online Date) 
Low: Base Minus 25% n/a $70,100  

Base: Merchant ATWACC 7.80% $93,500  
High: Base Plus 25% n/a $116,90  

 
Sources and Notes: 
2018 study numbers and current numbers are adapted from CONE studies for PJM, with adjustments applied as relevant for ERCOT; 

see Spees, et al. (2011) and Newell, et al. (2018a), respectively. CONE values determined with adjustments to technology 
characteristics within an area that most closely resemble ERCOT, as outlined in Table A1-3. The updated CONE estimate was 
developed based on the values in the 2018 PJM CONE report before adjustments were made to the assumed discount rate and 
exemption from paying sales taxes. 

 

  

 
46 See Newell, et al. (2018a). 
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Table A1-3. Performance Characteristics 

 Characteristic Unit Simple Cycle 
Plant Configuration   

     Turbine  GE 7HA.02 
     Configuration  1 x 0 
Heat Rate (HHV)   

     Base Load   

          Non-Summer (Btu/kWh) 9,138 
          Summer (Btu/kWh) 9,274 
Installed Capacity   

     Base Load   

          Non-Summer (MW) 371 
          Summer (MW) 352 
CONE ($/kW-yr) 93.5  

 Sources and Notes: 
 Technical and performance parameters use region EMAAC as most closely resembling ERCOT in altitude and ambient 

conditions from Newell, et al. (2018a). 
Based on ambient conditions of 92°F Max. Summer (55.5% Humidity) and 59°F Non-Summer. 

2. CONVENTIONAL GENERATION OUTAGES 

A major component of reliability analyses is modeling the availability of supply resources after considering 

maintenance and forced outages.  We model forced and maintenance outages of conventional generation 

units stochastically. Partial and full forced outages occur probabilistically based on distributions accounting 

for time-to-fail, time-to-repair, startup failure rates, and partial outage derate percentages.  Maintenance 

outages also occur stochastically, but SERVM accommodates maintenance outages with some flexibility to 

schedule maintenance during off-peak hours.  Planned outages are differentiated from maintenance 

outages and are scheduled in advance of each hourly simulation.  Consistent with market operations, the 

planned outages occur during low demand periods in the spring and fall, such that the highest coincident 

planned outages occur in the lowest load days.  This outage modeling approach allows SERVM to recognize 

some system-wide scheduling flexibility while also capturing the potential for severe scarcity caused by a 

number of coincident unplanned outages.47 

We develop distributions of outage parameters for time-to-fail, time-to-repair, partial outage derate 

percentages, startup probabilities, and startup time-to-repair from historical Generation Availability Data 

System (GADS) data for individual units in ERCOT’s fleet, supplemented by asset class average outage rates 

 
47 Capturing the possibility of such low-probability, high-impact events is an advantage of the unit-specific Monte 
Carlo outage modeling used in SERVM. The simpler convolution method, which is a common alternative outage 
modeling method, results in a distribution of outages that may under-estimate the potential for extreme events, 
especially in small systems. 
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provided by ERCOT where unit-specific data were unavailable.  Table A1-4 summarizes fleet-wide and 

asset-class outage rates, including both partial and forced outages. 

Table A1-4. Forced Outage Rates by Asset Class and Fleet Average 

Unit Type 

Equivalent Forced 
Outage Rate 

Mean Time 
to Fail 

Mean Time 
to Repair 

(%) (hours) (hours) 

Gas Combined Cycle 3.7 1,312 32 

Gas Combustion Turbine 8.3 967 74 

Gas Steam  14.0 687 58 

Coal 5.9 833 39 

Nuclear 0.2 16,467 330 

Fleet Weighted Average 5.9   

Sources and Notes: Parameter distributions based on two years (2018-2019) of unit-specific GADS data and asset class 
average outage rates from ERCOT. 

3. PRIVATE USE NETWORKS 

We represent generation from Private Use Networks (PUNs) in ERCOT on a net generation basis, where 

the net output increases with the system portion of peak load consistent with historical data and as 

summarized in  

Figure A1-3.  At any given load, the realized net PUN generation has a probabilistic quantity, with 10 

different possible quantities of net generation within each of 10 different bands of system load.48  Each of 

the 10 possible quantities has an equal 10% chance of materializing, although  

Figure A1-3 reports only the lowest, median, and highest possible quantity.  We developed this 

probabilistic net PUN supply curve based on aggregate hourly historical net output data within each range 

of peak load percentage.  During scarcity conditions with load at or above 93% of normal peak load, PUN 

output produces at least 2,776 MW of net generation with an average of 3,691 MW. 

We observe a pattern of availability and responsiveness consistent with: (a) gross generation, much of 

which is fully integrated into ERCOT’s economic dispatch and security constrained economic dispatch 

(SCED), resulting in substantial increases in the expected quantities over moderate price levels, minus (b) 

gross load, which introduces some probabilistic uncertainty around net generation, minus (c) some 

apparent load price-responsiveness, which likely contributes to some small additional increase in net PUN 

generation at very high prices. 

 

 
48 Hourly net PUN output data gathered from ERCOT, hourly load data from Velocity Suite, ABB Inc. 
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Figure A1-3. PUN Net Generation 

 
Sources and Notes: 
  Hourly net PUN output data gathered from ERCOT, hourly load data from Velocity Suite, ABB Inc. 
 Individual data points represent summary of data in a series of data binned by system load level, within 

each load bin, the points on the chart represent the lowest 10%, middle 10%, and top 10% of realized 
quantities in 2012 to 2020.  

4. INTERMITTENT WIND AND SOLAR 

We model a total quantity of intermittent wind and solar photovoltaic resources that reflects what ERCOT 

reported to NERC for its 2020 LTRA report, including the installed capacity of all existing and planned 

resources as of 2024.49  This includes 37,396 MW nameplate capacity of wind and 16,001 MW nameplate 

of solar, with intermittent output based on hourly generation profiles that are specific to each weather 

year. 

 
49 Provided by ERCOT staff. 
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We developed our system-wide hourly wind profiles by aggregating 40 years of synthesized hourly wind 

shapes for each location of individual units across the system wind shapes over 1980 to 2019, as provided 

by ERCOT staff.50  Figure A1-4 plots the average wind output by season and time of day, showing the 

highest output overnight and in spring months with the lowest output in mid-day and in summer months.  

The overall capacity factor for wind resources is 36.4%; although we calculate reserve margins assuming 

an ELCC of 63% for coastal wind, 29% for panhandle wind, and 16% for other wind, consistent with the 

ERCOT May 2020 CDR convention.51  In EORM 2018, wind units were given an ELCC of 14% for non-coastal 

wind and 59% for coastal wind, consistent with the ERCOT May 2018 CDR convention. 

Figure A1-4. Average Wind Output by Month and Time of Day 

  
Sources and Notes:  

Average of 40 years’ hourly wind profiles provided by ERCOT, originally from UL (formerly AWS Truepower).  

We similarly model hourly solar photovoltaic output based on hourly output profiles that are specific to 

each weather year, as aggregated from county-specific synthesized output profiles over years 1980 to 

2019.52  In aggregate, solar resources have a capacity factor of 27.3% across all years, and we assign a 76% 

 
50 We aggregated location-specific output profiles for all units, including traditional and coastal units. ERCOT obtained 
the original wind profiles from UL (formerly AWS Truepower).   
51 See ERCOT (2020a).  
52 Individual county output profiles for 1980-2019 were provided by ERCOT, obtained through UL (formerly AWS 
Truepower). 
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of nameplate contribution toward the reserve margin consistent with ERCOT’s CDR accounting 

convention.53 

5. HYDROELECTRIC  

We include 558.1 MW of hydroelectric resources, consistent with ERCOT’s May 2020 CDR report.54  We 

characterize hydro resources using six years of hourly data over 2012–2019 provided by ERCOT, and 40 

years of monthly data over 1980–2019 from EIA form 923.55  For each month, SERVM uses four parameters 

for modeling hydro resources, as summarized in Figure A1-5: (1) monthly total energy output and (2) 

monthly maximum output, as drawn from historical data consistent with each weather year; and (3) daily 

maximum output and (4) daily minimum output, as estimated from historical hourly data. 

When developing hydro output profiles, SERVM will first schedule output up to the monthly maximum 

output into the peak hours but will schedule some output across all hours based on historically observed 

output during off-peak periods up to the total monthly output.  During emergencies, SERVM can schedule 

up to 49.25 MW in drought conditions and 116.15 MW for all other months.     

Figure A1-5. Hydro Annual Energy (left) and Average Hydro Daily Shape (right) 

  
 Sources and Notes:  

 Monthly and annual energy data from EIA form 923, peak shaving capability based on eight years of historical hourly data from ERCOT. 

6. FUEL PRICES  

We use the 2020 Annual Energy Outlook Low Economic Growth case for our gas price future inputs.  These 

gas prices are consistent with fuel prices used in other ERCOT analysis, and are comparable to gas price 

forwards, as shown in Figure A1-6.  Alternative gas prices are explored as sensitivities, but do not make a 

 
53 See ERCOT (2020a).  For the 2018 study, solar was given a 75% contribution to reserve margin consistent with 
ERCOT’s 2018 CDR accounting conventions. 
54 See ERCOT (2020a). 
55 See Form 923 in EIA (2020). 



 

11 
 

substantial difference in results.  We estimate monthly fuel prices for ERCOT coal units based on the 

average 2019 historical prices.  For external coal units and all oil-fired plants, we use futures prices for the 

year 2024 and after applying a delivered fuel price basis.  We use U.S. Gulf Coast and Powder River Basin 

as the market price points for historical and futures prices as shown in Figure A1-6.56  To estimate a 

delivered fuel price basis for each market, we calculated the historical difference between that market 

price point and prices as delivered to plants in that region and then escalated the delivered price basis 

with inflation to the year 2024.57  This locational basis is inclusive of both market price basis as well as a 

delivery charge and therefore may be positive or negative overall as shown in  

 

 

 

Table A1-5. 

 
56 Oil futures at WTI Cushing were used to escalate No. 2 fuel oil prices into the future due to lack of data on No. 2 
futures at U.S. Gulf Coast.  Data from S&P Global Market Intelligence LLC and Bloomberg. 
57 Fuel price basis varies by region by not among individual plants.  Historical delivered fuel prices from Bloomberg, 
SNL Energy, and EIA. 
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Figure A1-6. Historical and Futures Prices for Gas, Coal, and No. 2 Distillate

 
Sources and Notes:  

No. 2 prices escalated using a linear relationship with WTI Cushing and escalated with WTI futures.   
Prices for the base case are from the 2020 Annual Energy Outlook (AEO) Low Economic Growth Case. 
Natural gas and coal historical prices and coal futures prices from Bloomberg, SNL Energy, and EIA.  

 

 

 

Table A1-5. ERCOT 2024 Delivered Fuel Prices 

Coal Fuel 
Price 

($/MMBtu) 

Gas Fuel 
Price 

($/MMBtu) 

Diesel Fuel 
Price 

($/MMBtu) 
1.65 2.96 11.14 

  
Sources and Notes:  
Coal Fuel Price is averaged from 2019 EIA 923 and FERC Form 1 data. 
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Gas Fuel Price from the 2020AEO Low Economic Growth Case. 

C. DEMAND-SIDE RESOURCES 

Several types of demand response participate directly or indirectly in ERCOT’s market, including: 

Emergency Response Service (ERS), Load Resources, and Price Responsive Demand.  These various types 

differ from each other in whether they are triggered by price-based or emergency actions, and restrictions 

on availability and call hours. Below we describe the assumptions and modeling approach for each type of 

resource. 

1. EMERGENCY RESPONSE SERVICE  

Emergency Response Service (ERS) includes two types of products, 10-minute and 30-minute (weather 

sensitive and non-weather sensitive) ERS, with the quantity of each product available changing by time of 

day and season as shown in  

Table A1-6.  The quantity of each product by time of day and season is proportional to the quantities most 

recently procured over the four seasons of year 2019, with the 2024 summer peak quantity assumption 

provided by ERCOT.58  Demand resources enrolled under ERS are dispatchable by ERCOT during 

emergencies, but cannot be called outside their contracted hours and cannot be called for more than 

twenty-four hours total per season.59 

 

 

 

 

 

Table A1-6. Assumed ERS Quantities Available in 2024 

 
58 For total ERS procurement quantities by product type and season, see ERCOT (2020b).   
59 See ERCOT (2018a) and ERCOT (2020a-c). 
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Sources and Notes:  
 Total available ERS MW for 2024 June-Sept. TP4 provided by ERCOT staff. 
 ERS 10-min and 30-min MW for other contract periods scaled proportionally to the 2024 LTRA summer quantity 

(767 MW), based on availability in 2019, from ERCOT (2020a). 

2. LOAD RESOURCES PROVIDING ANCILLARY SERVICES  

Consistent with ERCOT’s published minimum Responsive Reserve Service (RRS) requirements, we model 

1,172 MW of non-controllable load resources (LRs) that actively participate in the RRS market.60  All 1,172 

MW are modeled as responsive to Energy Emergency Alert, Level 2. 

3. PRICE RESPONSIVE DEMAND AND 4 COINCIDENT PEAK  

2019 historical demand response was used to develop modeling inputs to replicate stochastic demand-

side response for price responsive and 4-coincident peak demands. A comparison of historical and 

synthetic PRD calls is shown in Figure A1-7 The aggregate of these shapes was used to gross up all 40 

synthetic weather shapes. 

 
60 Currently, 1,400 MW is the maximum quantity of non-controllable LRs that are allowed to sell responsive reserve 
service (RRS) and is the clearing quantity in the vast majority of hours.  



 

15 
 

To model the price responsive demand (PRD) in SERVM, a curtailable unit was created that points to a 

price responsive demand curve.  The demand curve has 4 pricing points based on the segments above 

($200, $400, $800, and $1,500).  For each of the 4 pricing points, 50 data points were created using the 

segment formulas specified.  Within SERVM, whenever price reached one of the specified threshold points, 

SERVM randomly picked a DR value from that list of 50 data points. The Price Responsive Demand unit was 

available in all months. 

Figure A1-7. Comparison of Historical and Synthetic PRD Calls 

 

This stochastic representation in 2020 modeling differs from the discrete representation in the 2018 study, 

as shown in Figure A1-8.  

 

 

Figure A1-8. PRD Modeling Comparison Between 2018 and 2020 Studies 
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Similarly, 4CP was modeled as a load responsive unit. A comparison of historical and synthetic 4CP calls is 

provided below in Figure A1-9. Historical hourly 4CP was calculated as the sum of the following 4CP 

programs: 

• 4CP Competitive 

• 4CP NOIE 

To model this unit in SERVM, a curtailable unit was created that pointed to a load responsive demand 

curve. The demand curve had four load points based on the segments above (66,000, 67,000, 72,000, and 

74,000 MW). For each of the four load points, 50 data points were created using the segment formulas 

specified. Within SERVM, whenever load reached one of the specified threshold points, SERVM randomly 

picked a DR value from that list of 50 data points. The 4 CP unit was only available during the months of 

June to September.  
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Figure A1-9. Comparison of Historical and Synthetic 4CP Calls 

 

D. TRANSMISSION SYSTEM MODELING AND EXTERNAL RESOURCE OVERVIEW  

This section provides an overview of the system interconnection topology, intertie availability, ERCOT and 

neighboring regions’ supply curves.   

1. TRANSMISSION TOPOLOGY  

ERCOT is a relatively islanded system with only 1,220 MW of high voltage direct current (HVDC) interties; 

the majority of that intertie capacity is with SPP.61  As described in Section A, SERVM runs a multi-area 

economic dispatch and will schedule imports or exports from ERCOT depending on the relative cost of 

production compared to the neighboring systems.  During peaking conditions, ERCOT will generally import 

power due to the high internal prices, unless imports cannot be realized.  ERCOT may not be able to import 

during peak conditions because either: (a) the neighboring system experiences a simultaneous scarcity 

 
61 In some ERCOT studies the South DC Tie between ERCOT and Mexico is modeled with a capacity of 36 MW.  
However, we retired the 30 MW South Tie (Eagle Pass Tie) on April 2020 consistent with the ERCOT DC-Tie Operations 
Manual. See ERCOT (2020e) and ERCOT (2020a). 
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and will prioritize meeting its own load, or (b) insufficient intertie capability exists to support the desired 

imports.  The intertie capacities assumed for this study are shown in Figure A1-10 below. 

Figure A1-10. System Topology and Modeled Interties 

 
Sources and Notes:  
 ERCOT intertie ratings from ERCOT (2020e)  

 

2. EXTERNAL SYSTEMS’ RESOURCE OVERVIEW 

This section of our report provides an overview of the neighboring regions resource mixes.62  Appendix A.1 

summarizes the supply resource mix that we model in ERCOT, SPP, Entergy, and Mexico. For the 

neighboring regions, we rely on public data sources for the fleet makeup and demand-response 

penetrations.63  As shown in Figure A1-11, we model each external region at criterion, meaning that we 

treat them exactly at their respective reserve margin targets of 12.0%, 16.8%, and 15% for SPP, Entergy, 

and Mexico, respectively.64  Because these regions are currently capacity long, we adjusted their resource 

base downward by removing individual units of different resource types in order to maintain the current 

overall resource mix. 

 

 
62 More information on the ERCOT supply mix can be found in B. 
63 Specifically, we take external regions’ resource mix from publicly available data and external regions’ demand-
response penetrations from NERC (2019). 
64 See MISO (2019), NERC (2019), SPP (2018). For Mexico we use an assumed reserve margin above the peak load. 
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Figure A1-11. Resource Mix for ERCOT and Neighboring System 

 

3. AVAILABILITY OF EXTERNAL RESOURCES FOR ERCOT  

Imports to ERCOT depend on the conditions in the neighboring systems; even if transmission is available, 

ERCOT may not be able to import in emergency situations if the external region is peaking at the same 

time.  To provide intuition regarding anticipated prices and intertie flows during normal conditions, we 

summarize the ERCOT and neighboring regions’ supply curves in Figure A1-12.  The curve reports energy 

dispatch costs consistent with year 2024, accounting for unit-specific heat rates, variable operations and 

maintenance (VOM) costs, and locational fuel prices from Appendix 1.0.6.  For ERCOT, we gathered unit-

specific information representing heat rate curves, VOM, ancillary service capabilities, ramp rates, startup 

fuel, non-fuel startup costs, and run-time restrictions from ERCOT.  For external regions, we gathered unit-

specific heat rates from public data sources, supplemented by class-average characteristics similar to those 

in ERCOT for other unit characteristics.65 For all thermal resources, we model a seasonal capacity value 

which results in increased available capacity from the fleet during colder periods.   

Overall, ERCOT’s supply curve is similar to Mexico’s but is relatively tight compared to SPP and Entergy.  

However, interchange will be limited because of ERCOT’s relatively small quantity of HVDC interties, having 

 
65 Heat rates from ABB Velocity Suite (2018). 
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only 820 MW of interties with SPP and 400 MW with Mexico.66  Some factors affecting the quantity and 

economic value of interchange include that: (a) SPP has more lower-cost coal that is somewhat cheaper 

than ERCOT-internal resources that are dominated by efficient but somewhat higher-cost gas combined-

cycles, which will lead to ERCOT being a net importer, and (b) Mexico has a substantial proportion of 

relatively high-cost oil-fired peaking units, which will make such imports unlikely except at high prices in 

scarcity conditions.  Further, the regions experience some amount of load diversity that will change the 

relative economics of supply in each region and lead to inter-regional flows. 

Figure A1-12. 2024 System Supply Curves 

 
Sources and Notes:  

ERCOT is shown at 9.57% reserve margin, with resource mix consistent with 2020 LTRA as explained in Appendix 1.B, using 
unit-specific heat rates, VOM, and other characteristics obtained from ERCOT. 

 External systems resource mix from publicly available data. 
 Supply curves reflect VOM and fuel costs, with fuel prices from Appendix 1.B.6 above.   

E. SCARCITY CONDITIONS  

Increasing the reserve margin provides benefits primarily by reducing the frequency and severity of high-

cost emergency events. Calculating the economically optimal reserve margin requires a careful 

examination of the nature, frequency, trigger order, and cost of each type of market-based or 

administrative emergency action implemented during such events. 

 
66 Based on several years of historical hourly intertie ratings supplied by ERCOT. 
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1. ADMINISTRATIVE MARKET PARAMETERS  

We developed a representation of the 2024 ERCOT market using the parameters summarized in Table A1-

7.  We assume that the administrative Value of Lost Load (VOLL) is equal to the true market VOLL and the 

High System-Wide Offer Cap (HCAP) at $9,000/MWh.67  We also conduct a sensitivity analysis for a 

reasonable range of VOLL. 

Consistent with current market rules, we tabulate the Peaker Net Margin (PNM) over the calendar year 

and reduce the System-Wide Offer Cap (SWOC) to the Low System-Wide Offer Cap (LCAP) of $2,000/MWh 

after the PNM threshold is exceeded.68  However, we stress that this mechanism will have a small impact 

on the MERM since the PNM threshold is rarely exceeded at reserve margins near MERM. We ran a 

simulation scenario which did not adjust the SWOC after the PNM threshold was exceeded, and the MERM 

changed by less than .25% from the result in our base case.  We further explain our implementation of the 

ORDC PBPC in Sections 4 and 5 below. 
Table A1-7. ERCOT Scarcity Pricing Parameters Assumed for 2024 

Parameter Value Notes 

Value of Lost Load (VOLL) $9,000/MWh Administrative and actual 

High System-Wide Offer Cap (HCAP) $9,000/MWh Applied to PBPC and ORDC 

Low System-Wide Offer Cap (LCAP) $2,000/MWh 
Applies to PBPC and ORDC when 

PNM threshold exceeded 

Peaker Net Margin (PNM) Threshold $280,500/MW-yr 3 x CT CONE 

Sources and Notes:  
 HCAP, LCAP, and VOLL parameters consistent with PUCT (2019a). 
 PNM threshold is set at three times CT CONE consistent with current market rules and our updated CONE. 

The offer cap and PNM parameters determine the maximum offer price for small suppliers in ERCOT’s 

market under its monitoring and mitigation framework.  However, we do not explicitly model these 

dynamics and instead assume that suppliers always offer into the market at price levels reflective of their 

marginal costs, including commitment costs. 

2. EMERGENCY PROCEDURES AND MARGINAL COSTS  

 

Table A1-8 summarizes our modeling approach and assumptions under all scarcity and non-scarcity 

conditions depending on what type of marginal resource or administrative emergency procedure would 

 
67 See PUCT (2019a). 
68 See PUCT (2019a). 
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be implemented to meet an incremental increase in demand.  These marginal resources are listed in the 

approximate order of increasing marginal costs and emergency event scarcity, although in some cases the 

deployment order overlaps. 

We distinguish between market-based responses to high prices in scarcity conditions and out-of-market 

administrative interventions triggered by emergency conditions.  Among market-based responses, we 

include generation, imports, and price-responsive demand, including some very high-cost resources that 

will not economically deploy until prices are quite high.  We also model reserve scarcity that is 

administrative in nature but triggered on a price basis consistent with the ORDC and PBPC as explained in 

the following sections.   

A final category of emergency interventions encompasses out-of-market actions including ERS, LR, TDSP 

load management, and firm load shed deployments that are triggered for non-price reasons during 

emergency conditions.  We implement each of these actions at a particular scarcity level as indicated by 

the quantity of reserves capability available according to the ORDC x-axis, a measure similar to the physical 

responsive capacity (PRC) indicator used by ERCOT to monitor system operations.  To estimate the 

approximate ORDC x-axis at which each action would be implemented, we reviewed ERCOT’s emergency 

operating procedures, evaluated the PRC level coinciding with each action during historical emergency 

events, and confirmed these assumptions with ERCOT staff.69  These trigger levels are in line with historical 

emergency events, although actual emergency actions are manually implemented by the system operator 

based on a more complex evaluation of system conditions, including frequency and near-term load 

forecast.  

We also describe in the table below the marginal system costs of each type of scarcity event as well as the 

prevailing market price during those events.  In a perfectly-designed energy market, prices would always 

be equal to the marginal cost that would theoretically lead to optimal response to scarcity events and an 

optimal level of investments in the market.  In ERCOT, prices are reflective of marginal costs in most cases 

but not all.  Specifically, the ORDC curve is designed based on an assumption that load would be shed at X 

= 2,000 MW, while our review of historical events indicates that load shedding is more likely to occur at a 

lower level of X = 1,000 MW.  This discrepancy results in prices above marginal costs during moderate 

scarcity events, as discussed further in Appendix 1.E.4 below. 

 

 

 

 
69 The PRC metric is calculated with some accounting nuances that make it a somewhat different number from the 
ORDC Spin x-axis, we do not consider these nuances in our modeling, for the formula for calculating PRC, see ERCOT 
(2020d), Section 6.5.7. 
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Table A1-8. Emergency Procedures and Marginal Costs 

Emergency 
Level 

Marginal 
Resource 

Amount of 
Resource 

(MW) 
Trigger Price 

Marginal 
System 

Cost 

n/a Generation Variable Price Approximately $20 - $250 Same 

n/a Imports Variable Price 
Approximately $20-$250 

Up to $1,000 during load shed 
Same 

n/a 
Non-Spin 
Shortage 

700 
ORDC x-axis =  

3,000 MW 
$4,627 (from ORDC)* $1,025* 

n/a 
Price-Responsive 

Demand 
Variable Price $500 - $9,000 Same 

n/a 
Emergency 
Generation 

469.8 
ORDC x-axis =  

2,300 MW 
$5,850 (from ORDC) $1,372 

n/a PBPC 200 Price $1,000 - $9,000 Same 

EEA 1 30-Minute ERS 691** 
Spin ORDC x-axis =  

2,300 MW 
$5,850 (from ORDC) $1,372 

EEA1 Spin Shortage A 550 
Spin ORDC x-axis =  

2,300 MW 
$7,492 (from ORDC)* $1,856* 

EEA 2 
TDSP Load 

Curtailments 
262 

Spin ORDC x-axis =  
1,750 MW 

$9,000 (from ORDC) $2,469 

EEA 2 
Load Resources 

in RRS 
1,172*** 

Spin ORDC x-axis =  
1,750 MW 

$9,000 (from ORDC) $2,469 

EEA 2 10-Minute ERS 76** 
Spin ORDC x-axis =  

1,750 MW 
$9,000 (from ORDC) $2,469 

EEA3 Spin Shortage B 750 
Spin ORDC x-axis = 

1,750 MW 
$9,000 (from ORDC) $3,562* 

EEA 3 Load Shed Variable 
Spin ORDC x-axis =  

1,000 MW 
VOLL = $9,000 Same 

Sources and Notes: 
*: Price reflects the average price between the upper and lower level of each resource. 
**: 76 10NWS + 666 30NWS + 26 30WS = 767 total ERS (CDR Value). Both NWS and WS are included in the 30-Minute ERS. 
***: 60% of RRS 
Developed based on review of historical emergency event data, input from ERCOT staff, and ERCOT’s emergency procedure manuals; see ERCOT 

(2020d), Section 6.5.9, and ERCOT (2020f), Section 4. 

3. EMERGENCY GENERATION  

During severe scarcity conditions, there are out-of-market instructions by ERCOT as well as strong 

economic incentives for suppliers to increase their power output to their emergency maximum levels for 

a short period of time.70  During these conditions, suppliers can output power above their normal capacity 

ratings, although doing so is costly because it may impose additional maintenance costs and may put the 

unit at greater risk of failure.   

 
70 See Section 6.5.9, ERCOT 2020d.  
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According to ERCOT’s emergency maximum ratings, the aggregate ERCOT fleet should be able to produce 

approximately 469.8 MW in excess of summer CDR ratings.71  We estimate the marginal cost of emergency 

output at approximately $2,752/MWh, consistent with ERCOT’s procedures for calling emergency 

generation. 

4. OPERATING RESERVES DEMAND CURVE  

The most important and influential administrative scarcity pricing mechanism in ERCOT is the operating 

reserves demand curve (ORDC) that reflects the willingness to pay for spinning and non-spinning reserves 

in the real-time market.  Figure A1-13 illustrates our approach to implementing ORDC in our modeling, 

which is similar to ERCOT’s implementation, although with some simplifications.72  We implement distinct 

ORDC curves for each of the four seasons each year, and for each of two types of operating reserves.73 

Figure A1-13. Operating Reserve Demand Curves 
Example: Summer Hours 15-18 

 
Sources and Notes: 

ORDC curves developed consistent with ERCOT (2013). 

 
71 This number excludes private use network resources, which we model separately as explained in Section 3 above.   
72 For a detailed explanation of ERCOT’s ORDC implementation see their whitepaper on the methodology for 
calculating ORDC at ERCOT (2013). 
73 See ERCOT (2013). 
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The ORDC curves are calculated based on a loss of load probability (LOLP) at each quantity of reserves 

remaining on the system, multiplied by the value of lost load (VOLL) caused by running short of operating 

reserves.74  This curve reflects the incremental cost imposed by running short of reserves and is added to 

the marginal energy cost to estimate the total marginal system cost and price. 

The x-axis of the curve reflects the quantity of operating reserves available at a given time, where: (a) the 

spin ORDC includes all resources providing regulation up or RRS, suppliers that are online but dispatched 

below their maximum capacity, hydrosynchronous resources, non-controllable load resources, and 10-

minute quickstart; and (b) the spin + non-spin ORDC include all resources contributing to the spin x-axis as 

well as any resources providing NSRS and all 30-minute quickstart units.  Table A1-9 provides a summary 

of the resources that are always available to contribute to the ORDC x-axis unless they have been 

dispatched for energy although the realized ORDC x-axis can be higher (if other resources are committed 

but not outputting at their maximum capability) or lower (during peaking conditions when some of the 

below resources are dispatched for energy).75 

Table A1-9. Resources Always Contributing to ORDC X-Axis Unless Dispatched for Energy 

Spin X-Axis   

     Hydrosynchronous Resources (MW) 245 

     Non-Controllable Load Resources (MW) 1,172 

Non-Spin X-Axis   

     30-Minute Quickstart (MW) 5,206 

Total Spin + Non-Spin (MW) 6,623 

  

The red and pink curves in Figure A1-13 show the ORDC curves used for price-setting purposes, calculated 

as if ERCOT would shed load at an ORDC x-axis of X = 2,000 MW.  However, as we explained in Appendix 

1.E.2 above, we assume that load shedding will actually occur at X = 1,000 MW based on our analysis of 

historical emergency events and consistent with the blue curves below.  In other words, we model a 

discrepancy between marginal costs (blue) and market prices (red) that will create some inefficiency in 

realized market outcomes. 

 
74 Note that the lost load implied by this function and caused by operating reserve scarcity is additive to the lost load 
that we report elsewhere in this study.  This is because the LOLP considered in ERCOT’s ORDC curve is caused by sub-
hourly changes to supply and demand that can cause short-term scarcity and outages that are driven only by small 
quantities of operating reserves, but are not caused by an overall resource adequacy scarcity, which is the type of 
scarcity we model elsewhere in this study.  For simplicity and clarity, we refer to these reserve-related load-shedding 
events as “reserve scarcity costs” to distinguish them from the load shedding events caused by total supply scarcity.  
We do not independently review here ERCOT’s approach to calculating LOLP, but instead take this function as an 
accurate representation of the impacts of running short of operating reserves.  We also do not change the ORDC 
when varying the VOLL in our model sensitivities.  
75 We assume that the CT reference unit is capable of providing non-spin from an offline position. 
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As in ERCOT’s ORDC implementation, we calculate: (a) non-spin prices using the non-spin ORDC; (b) spin 

prices as the sum of the non-spin and spin ORDC; and (c) energy prices as the sum of the marginal energy 

production cost plus the non-spin and spin ORDC prices.  However, as a simplification we do not scale the 

ORDC curves in proportion to VOLL minus marginal energy in each hour.76  Instead, we treat the ORDC 

curves as fixed with a maximum total price adder of VOLL minus $500, which causes prices to rise to the 

cap of $9,000/MWh in scarcity conditions, because $500 is the cap placed on marginal energy prices in the 

model.  Higher-cost demand-response resources will be triggered in response to high ORDC prices and 

therefore prevent prices from going even higher, but do not affect the “marginal energy component” of 

price-setting.  We model the ORDC curves out to a maximum quantity of 8,000 MW where the prices are 

near zero, although they never drop all the way to zero. 

These ORDC curves create an economic incentive for units to be available as spinning or non-spinning 

reserve, which influences suppliers’ unit commitment decisions.  We therefore model unit commitment in 

three steps: (1) a week-ahead optimal unit commitment over the fleet, with the result determining which 

long-lead resources will be committed77; (2) a four-hour ahead unit commitment (updated hourly) with an 

updated fleet outage schedule, with the result determining the preliminary commitment and 

decommitment schedules for combined cycle units; and (3) an hourly economic dispatch that dispatches 

online baseload units, and can commit 10-minute and 30-minute quickstart units if energy and spin prices 

are high enough to make it more profitable than remaining offline (similarly, if prices are not high enough 

these units will economically self-decommit).78  Note that 10-minute quickstart units can earn spin 

payments from an offline position while 30-minute quickstart units can earn non-spin payments from an 

offline position.  These resources will not self-commit unless doing so would result in greater energy and 

spin payments (net of variable and commitment costs) than would be available from an offline position.  

We use a similar logic to economically commit or de-commit units until the incentives provided by the 

ORDC are economically consistent with the quantity of resources turned on. 

5. POWER BALANCE PENALTY CURVE 

The Power Balance Penalty Curve (PBPC) is an ERCOT market mechanism that introduces administrative 

scarcity pricing during periods of supply scarcity.  The PBPC is incorporated into the security constrained 

economic dispatch (SCED) software as a set of phantom generators at administratively-specified price and 

quantity pairs, as summarized in the blue curve in Figure A1-14.79  Whenever a PBPC is dispatched for 

 
76 See ERCOT’s implementation in ERCOT (2013). 
77 Short-term resources are included in the week-ahead commitment algorithm, but their commitment schedule is 
not saved since it will be dynamically calculated in a shorter window.  But using short-lead resources in the week-
ahead commitment allows them to affect the commitment of long-lead resources. 
78 These week-ahead and day-ahead commitment algorithms minimize cost subject to meeting load as well as 
ERCOT’s administratively-determined regulation up and spinning reserve targets, with non-spinning reserve targets 
not considered at the unit commitment phase. 
79 See ERCOT (2019b). 



 

27 
 

energy, it reflects a scarcity of supply relative to demand in that time period that, if sustained for more 

than a moment, will materialize as a reduction in the quantity of regulating up capability.  At the highest 

price, the PBPC will reach the system-wide offer cap (SWOC), which is set at the HCAP at the beginning of 

each calendar year but which will drop to the LCAP if the PNM threshold is exceeded as explained in 

Appendix 1.E.1 above. 

We similarly model the PBPC as phantom supply that may influence the realized price, and that will cause 

a reduction in available regulating reserves whenever called.  However, we model only the first 200 MW 

of the curve at prices below the cap, and assume that all price points on the PBPC will increase according 

to the scheduled SWOC.80  We also assume that the prices in the PBPC are reflective of the marginal cost 

incurred by going short of each quantity of regulating reserves.81  Consistent with current market design, 

we assume that once the PNM threshold is exceeded, the maximum price in the PBPC will be set at the 

LCAP + $1/MWh or $2,001/MWh.82  Note that even after the maximum PBPC price is reduced, ERCOT 

market prices may still rise to a maximum value of VOLL equal to $9,000/MWh during scarcity conditions 

because of the ORDC as explained in the following section. 

Figure A1-14. Power Balance Penalty Curve 

  

Sources and Notes:  
  PBPC numbers from ERCOT (2019b), p. 22-23. 

 
80 See ERCOT (2019b). 
81 Once the PNM is exceeded and the PBPC is reduced, these prices are no longer reflective of marginal cost but are 
instead lower than marginal cost at regulation shortage quantities greater than 40 MW.  
82 See ERCOT (2019b). 
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APPENDIX 2: EFFECTIVE LOAD CARRYING CAPABILITY 

The reserve margin is the sum of all dependable generating capacity divided by expected peak load. 

Dependable generating capacity varies for non-dispatchable or energy-limited resources and generally 

depends on simulations which calculate the comparable conventional capacity for the resource being 

evaluated. Very constrained resources such as 1-hour energy storage or low capacity factor wind would 

be expected to have ratios much lower than 100% while very dependable resources such as long duration 

storage would have ratios close to 100%. 

The actual steps to determine these ratios are as follows: 

1. Calibrate system reliability to 0.1 LOLE by removing or adding conventional capacity. 

2. Remove the non-dispatchable or energy-limited resource portfolio in question. This will increase 

the frequency of LOLE events. 

3. Restore LOLE to 0.1 by adding conventional capacity.  

4. Calculate the ELCC: 

𝐸𝐿𝐶𝐶 =  
𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐴𝑑𝑑𝑒𝑑 (𝑆𝑡𝑒𝑝 3)

𝑁𝑜𝑛-𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑜𝑟 𝐸𝑛𝑒𝑟𝑔𝑦-𝐿𝑖𝑚𝑖𝑡𝑒𝑑 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑅𝑒𝑚𝑜𝑣𝑒𝑑 (𝑆𝑡𝑒𝑝 2)
 

Figure A2-1 contains a visual example of the process described above.  

Figure A2-1. ELCC Visual Example 
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AVERAGE ELCC VERSUS INCREMENTAL ELCC 

The calculation steps explained above are for average ELCC. It determines the value of an entire portfolio. 

Calculations for incremental ELCC would typically be done in reverse. Add a small resource to a calibrated 

system and determine the capacity to remove to determine ELCC. Average ELCC would be used for reserve 

margin accounting. Incremental ELCC is used for procurement decisions. 

In Figure A2-2, the average ELCC illustration on the left shows the reduction in net load which would 

approximately correspond to the average ELCC value. The illustration on the right shows the renewable 

profile of an incremental resource against the net load profile of a system with an existing penetration of 

renewable capacity. The Incremental ELCC value would approximately correspond to the average output 

during the net load peak. 

Figure A2-215. Average ELCC Versus Incremental ELCC 

 

Both of these methods differ from the implicit ELCC calculations in the CDR accounting in ERCOT. The 

capacity credit given to wind and solar in CDR is based on the average of the top 20 gross load hours. Since 

this method doesn’t consider that the net load may have shifted due to the renewable output, it will 

overstate the ELCC of the renewable resources. Table A2-1 shows a comparison of methods of ELCC 

calculation using synthetic data for both wind and solar. 

 

 

 

 

 

 

 

 

Average ELCC 
Incremental ELCC 
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Table A2-1. Average Output and Net Load Reduction ELCC Comparison 

 Wind  Solar 

 

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Net Load Reduction 
(True Reliability 

Contribution) 

 

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Net Load Reduction 
(True Reliability 

Contribution) 

2010 12% 8%  78% 75% 

2011 24% 12%  83% 72% 

2012 13% 6%  80% 72% 

2013 24% 13%  82% 80% 

2014 24% 16%  80% 68% 

2015 18% 13%  81% 76% 

2016 30% 21%  76% 71% 

2017 24% 18%  75% 68% 

2018 20% 16%  76% 70% 

2019 27% 16%  79% 65% 

Average 22% 14%  79% 72% 

ELCC RESULTS 

The net load reductions in Table A2-1 indicate the true reliability contribution, but SERVM simulations are 

required to get precise values. Performing the average ELCC simulations results in ELCCs for the entire 

renewable portfolio in Table A2-2. 

Table A2-2. Average ELCC Simulation Results for Entire Renewable Portfolio 

 2020 2024 2024 High Renewable 

All Renewable ELCC (MW) 9,436 18,693 22,844 

All Renewable Installed Capacity (MW) 37,923 53,397 73,397 

All Renewable ELCC (%) 25% 35% 31% 

 

These renewable portfolio totals will be used in later steps since the sum of individual technology or zonal 

ELCCs cannot exceed the renewable portfolio total. Technology specific ELCCs are calculated by removing 

only the study resource. Since wind and solar exhibit some synergy for reliability contribution, the sum of 

the raw ELCCs for wind and solar is greater than the entire portfolio ELCC. Figure A2-3 shows how the 

addition of solar pushes the net load to late in the day when the aggregate ERCOT wind output is expected 

to produce more energy. The higher energy translates to higher ELCC. In reverse, wind would push the net 

load peak to earlier in the day, increasing the ELCC for solar as well. 
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Figure A2-316. Effects of Addition of Solar to Net Load Shape 

 

The resulting raw ELCCs for each technology are shown in Tables A2-3 and A2-4. As expected the sum of 

the individual technology ELCCs is larger than the entire portfolio ELCC, since the standalone analyses 

include the full synergistic benefits from the other technology. This would be double counting the benefit 

by assigning it to each of wind and solar. 

Table A2-3. Wind Technology Raw ELCC Values 

 2020 2024 2024 High Renewable 

Wind Raw SERVM ELCC (MW) 5,422 7,045 9,194 

Wind Installed Capacity (MW) 32,026 37,396 42,396 

Wind ELCC (%) 17% 19% 22% 

 

Table A2-4. Solar Technology Raw ELCC Values 

 2020 2024 2024 High Renewable 

Solar Raw SERVM ELCC (MW) 4,711 12,529 17,095 

Solar Installed Capacity (MW) 5,897 16,001 31,002 

Solar ELCC (%) 80% 78% 55% 
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Since the sum is larger, the total portfolio ELCC needs to be allocated to each respective technology 

according to the following formulas: 

▪ 𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶 =  
𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶

(𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶+𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶)
∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐸𝐿𝐶𝐶 

▪ 𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶 =  
𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶

(𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶+𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶)
∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐸𝐿𝐶𝐶 

The results of these calculations are shown in Tables A2-5 and A2-6. 

Table A2-5. Wind Technology Allocated ELCC Values 

 2020 2024 2024 High Renewable 

Wind Raw SERVM ELCC (MW) 5,422 7,045 9,194 

Wind Allocated ELCC (MW) 5,049 6,728 7,989 

Wind ELCC (%) 16% 18% 19% 

 

Table A2-6. Solar Technology Allocated ELCC Values 

 2020 2024 2024 High Renewable 

Solar Raw SERVM ELCC (MW) 4,711 12,529 17,095 

Solar Allocated ELCC (MW) 4,387 11,965 14,855 

Solar ELCC (%) 74% 75% 48% 

 

The synergy can be seen in both the allocation calculation as well as the change from year to year. The 

wind capacity value increases from 2020 to 2024 and to 2024 High Renewable as solar shifts the net load 

profile to later in the day. Solar ELCC doesn’t decline much between 2020 and 2024, but additions after 

the penetrations assumed in the 2024 portfolio have a rapidly declining ELCC. The average ELCC for solar 

increases from approximately 12 GW in 2024 to 15 GW 2024 with High Renewable. The 3 GW increase in 

ELCC corresponds to a 15 GW solar increase, so on a relative basis, the solar added between these 

scenarios only achieves a 20% ELCC. 

We performed further calculations to isolate locational ELCCs for both wind and solar. Wind is divided into 

Wind Coastal (Wind-C), Wind Other (Wind-O), and Wind Panhandle (Wind-P). A typical summer profile is 

shown for each wind location in Figure A2-4. 
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Figure A2-417. Typical Daily Summer Profile for Each Wind Subcategory 

 

Solar is divided into West and Non-West according to the geographic grouping shown in the map in Figure 

A2-5. 
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Figure A2-518. Geographic Grouping for Solar West and Non-West 

 

As expected, the coastal wind which exhibits higher capacity factor and higher diversity with load has a 

higher ELCC than the other two locational categories. However, it is not as high as suggested by the average 

output calculations performed by ERCOT. Table A2-7 compares the ELCCs for different years and portfolios 

and the ERCOT CDR methodology. 
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Table A2-7. Wind ELCC by Location 

 May 2020 CDR Summer Peak 

Average Capacity Contribution 
2020 2024 2024 High Renewable 

Wind-C 63% 31% 37% 24% 

Wind-O 16% 11% 13% 18% 

Wind-P 29% 21% 22% 17% 

All Wind  16% 18% 19% 

Solar ELCC is in part determined by longitude. Projects further to the west would be expected to have 

higher ELCCs in the summer since they would continue to produce output late into the afternoon. Since 

summer is the predominant reliability risk season, this effect drives the ELCC for solar, but in winter 

peaking regions across the country, eastern projects could produce higher ELCCs if early morning peaks 

are a reliability concern. The difference in ELCCs by location is 3-4%, as shown in Table A2-8, but more 

granular analysis comparing ELCCs for single locations in far West Texas vs far East Texas might show 

slightly larger disparities. 

Table A2-8. Solar ELCC by Location 

 May 2020 CDR Summer Peak 

Average Capacity Contribution 
2020 2024 2024 High Renewable 

Solar Non-West 76% 71% 72% 46% 

Solar West 76% 75% 76% 49% 

All Solar  74% 75% 48% 

 

Until 2024, the CDR accounting methodology roughly approximates the ELCC results from SERVM. 

However, further expansion of the solar fleet will sharply reduce ELCCs creating a disconnect with CDR 

methodology.  

 

 

 


