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I. Purpose 

This Technical Appendix documents the input assumptions used for the study cases developed for the CES-

21 Grid Integration Flexibility Metrics and Standards project. This document is organized as follows: 

• Section II provides a high level overview of the source data used to create the CAISO and WECC 

systems 

• Section III provides a detailed discussion on the various uncertainties modeled, including data 

sources and methods 

• Section IV provides a more detailed description of the individual study cases 

• Section V provides a discussion on the modeling changes made to the SERVM software over the 

course of the project 

II. Source Data for CAISO & WECC 

A.  Source Data and Study Year   

Unless otherwise noted, the input assumptions used for the project were based on the latest LTPP data for 

CAISO and TEPPC data for the WECC. Specifically, the project relied upon the following data sources to 

develop the CAISO and WECC representations: 

• 2016 LTPP Scenario Tool and the data sources referenced within1 - Generation and load data for 

CAISO, demand side resources based on referenced CEC data, and RPS resources based on 

referenced RPS Calculator data 

• 2026 TEPPC Common Case Dataset2 – Generation and load data for WECC 

 

                                                           
1 2016 LTPP Scenario Tool v1.2 (http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=12332)  
2 Project used the latest TEPPC dataset available at the time of the final analysis (version 1.7),  

(https://www.wecc.biz/SystemAdequacyPlanning/Pages/Datasets.aspx)  

http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=12332
https://www.wecc.biz/SystemAdequacyPlanning/Pages/Datasets.aspx
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B.  Study Topology 

Figure 1 shows the study topology that was used for the study.  SERVM models the regions in Figure 1 

with a pipe and bubble representation, allowing for regions to share capacity based on economics and 

subject to physical transmission constraints. The following is a list of regions included in the study: 

• Arizona Public Service Company (AZPS) 

• British Columbia Hydro Authority (BCHA) 

• Bonneville Power Administration – Transmission (BPAT) 

• Comision Federal de Electricidad (CFE) 

• Imperial Irrigation District (IID) 

• Idaho Power Company (IPCO) 

• Los Angeles Department of Water and Power (LADWP) 

• Nevada Power Company (NEVP) 

• NorthWestern Energy (NWMT) 

• PacifiCorp East (PACE) 

• PacifiCorp West (PACW) 

• Pacific Gas and Electric Company - Bay Area (PGE Bay) 

• Pacific Gas and Electric Company - Valley Area (PGE Valley) 

• Public Service Company of New Mexico (PNM) 

• Portland General 

• Public Service Company of Colorado (PSCO) 

• Southern California Edison (SCE) 

• San Diego Gas and Electric (SDGE) 

• Sacramento Municipal Utility District (SMUD) 

• Sierra Pacific Power Company (SPPC) 

• Salt River Project (SRP) 

• Tucson Electric Power Company (TEPC) 

• Turlock Irrigation District (TIDC) 

• Western Area Power Administration – Colorado/Missouri Region (WACM) 

• Western Area Power Administration - Lower Colorado Region (WALC) 

 
CAISO was separated into 4 distinct regions in SERVM: PGE Bay, PGE Valley, SCE, and SDGE.     
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Figure 1.  Study Topology 

 

 

III. Modeling of Uncertainties 
 

A.  Load Modeling   

Simulating a future year requires a forecast of not only peak load and total energy, but also the shape of 

load over the course of the year. Since load is a function of weather and future weather is unknown, the 

best representation of the shape of load is to use historical weather. To capture a wide range of possible 

weather conditions and the associated load, we constructed synthetic load shapes for 35 historical weather 

years. These shapes are our forecast of what load may look like in a future year given the expected 
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customers and assuming we have identical weather to a historical year. For instance, the 1985 synthetic 

shape has an 8,760 forecast of loads for 2026 based on weather patterns from 1985.  

The relationship between weather and load is derived from neural network modeling of recent historical 

loads and temperatures. Developing this relationship is comprised of the following steps: 

• Solar production profiles were added to the 2010-2014 load shapes. Since behind-the-meter PV is 

treated as a generator in this study, all load shapes needed to be grossed up for historical production.   

• Historical demand response calls were added back to load. 

• Next, the 2010-2014 load profiles were scaled to a common base year to remove load growth. 

• All load data was adjusted by a day of week factor so that all loads were representative of 

Wednesday weather conditions.  

• Weather and timing data were collected for each year as inputs to the neural net process. 

Temperature data came from NOAA. The specific variables used in the training included: 

temperature, 24 hour prior temperature, 48 hour prior temperature, heating degree days, cooling 

degree days, and time of day. 

• The neural net inputs and loads were then separated by month and trained with Ward System’s 

Neuroshell Predictor. The application saves the relationship identified in the training. 

• Since the neural network training process requires significant data to develop a meaningful 

relationship, additional modeling was required for rare extreme weather periods. A linear 

relationship was defined for loads in the peak hour of the day as a function of temperature. The 

relationship for SCE is shown in Figure 2. 
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Figure 2. SCE Loads in the Peak Hour of Day as a Function of Temperature 

3 

Next, the relationships were applied to historical weather to develop 35 distinct load shapes. The shapes 

used for the SERVM simulations are based on consumption as defined in the CEC Mid Baseline-Mid 

AAEE. To match the projected 2026 summer peak and annual energy, the historical weather load values 

for every hour for every shape are adjusted such that the average peak and energy of all the weather shapes 

is equal to the respective 2026 CAISO forecast (or TEPPC 2026 forecast for non-CAISO regions).  

In order to meet both a peak and energy target, a load stretching algorithm in SERVM is employed. Figure 

3 displays the variance in summer peak load simulated based on 35 years of historical weather (these are 

annual peaks as well since the annual peak occurred in a summer month in every year). In this figure, each 

year's value is the percentage difference from each year's peak to the average of all peaks. Compared to a 

normal or average weather year, peak loads across all three regions can be as high as 7% above normal and 

as low as 5% below normal.  This variation is strictly due to weather, and does not include economic load 

                                                           
3 The curve fit formula demonstrates 215 MW/F° of load response for SCE in the summer. 
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growth uncertainty. This load variation is not directly comparable to the variation in CEC's 1-in-5 or 1-in-

10 load forecast since the CEC forecasts incorporate both economic and weather uncertainty.  

Figure 3.  CAISO (PGE, SCE, SDGE) Peak Load Variance

 

B. Energy Efficiency Modeling  

Energy efficiency was modeled as a fixed profile for every year based on the single AAEE hourly shape 

from the CEC. Figure 4 shows the average EE daily shape when max daily load is greater than 45,000 MW 

in the month of August. As the timing of the net load peak shifts to later in the day, the capacity value of 

AAEE drops. 
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Figure 4. Average EE August Daily Shape when Max Daily Load is Greater than 45,000 MW 

 

The energy efficiency at the time of the annual peak net load for each weather year is shown below in Table 

1 and demonstrates that the capacity value of AAEE is significantly variable. As discussed in the results 

and recommendations section of the final report, developing additional, weather based AAEE profiles 

represents an opportunity for future research.  

Table 1. Energy Efficiency at Time of Annual Peak Net Load 

Year Peak Net Load EE 

1980 49,730.31 3,393 

1981 50,119.81 4,347 

1982 48,459.58 3,747 

1983 51,449.94 3,681 

1984 51,259.86 3,764 

1985 50,024.35 3,187 

1986 46,186.76 4,092 

1987 48,509.23 3,947 

1988 53,089.51 4,485 

1989 45,724.75 2,685 

1990 50,038.56 3,549 

1991 49,413.28 4,152 
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1992 49,363.70 3,635 

1993 48,276.21 3,640 

1994 50,398.09 3,366 

1995 46,766.40 3,787 

1996 50,241.64 3,366 

1997 49,562.70 3,852 

1998 49,539.66 3,787 

1999 49,203.13 3,547 

2000 45,749.08 3,418 

2001 45,648.38 3,931 

2002 45,564.08 3,407 

2003 46,760.45 3,856 

2004 50,436.60 3,798 

2005 47,237.22 3,728 

2006 53,052.63 3,836 

2007 50,248.71 2,837 

2008 49,211.77 2,691 

2009 49,712.04 3,728 

2010 50,324.10 3,662 

2011 48,259.33 3,006 

2012 49,240.44 3,366 

2013 47,646.64 3,798 

2014 47,602.56 3,945 

C. Source of weather profiles for wind and solar generation   

1. Wind generation profiles   

Wind profiles were produced using historical metered output from 2010-2014.  First, the shapes from this 

raw data were normalized to 100% by dividing the historical output by the appropriate annual capacity for 

each of the five years. Next, a correlation was created between the load and wind output for SCE and PG&E 

Valley. The daily wind profiles from the day that most closely matched the total load out of all the days +/- 

5 days of the source day was used to create the profiles for 1980 to 2014. For example, the profile for 

January 1, 1980 was selected by comparing loads between December 26 and January 5 from 2010 to 2015 

to the synthetically created load shape for January 1, 1980. If the closest match was from December 27, 

2011, then all wind profiles in all California regions for January 1, 1980 were pulled from December 27, 

2011.  This method allows the historical diversity between wind projects in California to be maintained. 
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Hours 24 to 1 (the seams) were interpolated from hour 23 and hour 2 to avoid a drastic hourly change in 

output.  

Figure 5 shows the average daily wind profiles for August. 

Figure 5. August Average Daily Wind Profile 

 

Wind volatility was created in the simulations based on historical one-minute data from the CAISO.4 Hourly 

integrated values were calculated for the actual historical data and 5-minute shapes were calculated that 

minimized volatility. The 5-minute shapes with volatility removed were compared to the 5-minute actuals 

to develop distributions of volatility at a range of normalized output levels. Then for each simulation, Monte 

Carlo draws from the volatility distributions were added to wind profiles without volatility. Table 2 below 

demonstrates the frequency with which specific volatility values were drawn. These represent the 

unexpected movement in wind output in a 5-minute period. 

 

                                                           
4 One-minute wind, solar, and load data, derived based on historical operations data, are provided by the CAISO 

publicly through its annual Flexibility Needs Assessment initiative 

(https://www.caiso.com/informed/Pages/StakeholderProcesses/FlexibleCapacityNeedsTechnicalStudyProcess.aspx) 
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Table 2. Frequency Distribution of Wind Volatility  

  Normalized Output (%) 

  0 10 20 30 40 50 60 70 80 90 

N
o
rm

a
li

ze
d

 D
iv

e
rg

en
ce

 (
%

)  

-5+  -  .09 .42 .49 .58 .59 .68 .73 .26  -  

-4 to -3 .03 .24 .56 .63 .81 1.13 1.18 1.23 .81 .60 
-3 to -2 .16 1.08 1.69 2.45 3.38 3.89 4.01 3.54 4.15 2.08 
-2 to -1 .98 6.70 8.28 10.48 11.99 12.30 11.80 11.38 13.37 10.42 

-1 to 0 48.07 42.04 38.97 35.58 33.28 31.94 32.50 33.08 31.33 37.80 
0 to 1 49.65 41.46 38.76 36.58 33.27 32.69 32.26 32.56 34.00 37.20 
1 to 2 .99 7.15 8.53 10.25 11.60 11.94 11.83 12.05 10.70 8.33 

2 to 3 .10 1.02 1.90 2.46 3.65 3.56 3.78 3.48 3.48 3.27 
3 to 4 .02 .18 .55 .59 .99 1.13 1.21 1.05 1.19 .30 
4 to 5  -  .05 .17 .22 .30 .53 .42 .51 .48  -  

5+  -   -  .16 .25 .17 .30 .33 .38 .22  -  

2. Solar generation profiles  

Solar shapes were developed from data downloaded from the NREL National Solar Radiation Database 

(NSRDB) Data Viewer. Data was available for the years 1998 through 2014. Data was downloaded from 

170 different cities. Historical solar data from the NREL NSRDB Data Viewer included variables such as 

temperature, cloud cover, humidity, dew point, and global solar irradiance. The data obtained from the 

NSRDB Data Viewer was input into NREL’s System Advisory Model (SAM) for each year and city to 

generate the hourly solar profiles based on the solar weather data for both a fixed solar PV plant and a 

tracking solar PV plant. Inputs in SAM included the DC to AC ratio of the inverter module and the tilt and 

azimuth angle of the PV array. Data was normalized by dividing each point by the desired array size of 

4,000 kWdc. Solar profiles for 1980 to 1998 were selected by using the daily solar profiles from the day 

that most closely matched the total load out of the corresponding data for the days that we had for the 17-

year interval. The profiles for the remaining years 1998 to 2014 came directly from the normalized raw 

data. The previous steps for selecting a profile were completed for each of the 170 cities.  The aggregated 

profiles for each region were calculated by averaging the cities that fell in each region. 
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Figure 6 show the average daily solar profiles for August.  

Figure 6. August Solar Profile 

 

Table 3 shows similar calculations to those performed for wind were performed to create solar volatility 

distributions using historical solar volatility. 
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D.  Economic Load Forecast Error 

Economic load forecast error multipliers were developed to isolate the economic forecast uncertainty 

inherent in four year-ahead5 load forecasts.  Based on reviewing Congressional Budget Office (CBO) GDP 

forecasts 4 years ahead, and comparing those forecasts to actual data, the standard deviation of a normal 

distribution of forecast deviations was calculated to develop an economic load forecast error.  Because 

electric load grows at a slower rate than GDP, a 40% multiplier was then applied to the raw CBO forecast 

error.  Table 4 shows the economic load forecast multipliers and associated probabilities.  The table shows 

that 7.9% of the time, it is expected that load will be under-forecasted by 4% four years out. The SERVM 

model utilized each of the 33 weather years and applied each of these five load forecast error points to 

create 165 different load scenarios. As an example, when each of the five load forecast error points is 

applied to the 1980 weather year, all 8,760 hours are multiplied by the respective error. Five distinct cases 

then are created for 1980, each of which will be simulated independently. This process is followed for every 

weather year. While the economic load forecast error distribution follows a normal distribution where each 

point has a different weighting, each weather year was given equal probability of occurrence.   

 

Table 4.  4 Year Ahead Economic Load Forecast Error 

Load Forecast Error Multipliers Probability (%) 

0.96 7.9 

0.98 24.0 

1.00 36.3 

1.02 24.0 

1.04 7.9 

                                                           
5 Four year ahead forecast uncertainty was used to represent the minimum time it takes a developer to permit and 

construct a new power plant.   
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E.  Unit Outage Data 

Unlike typical production cost models, SERVM does not use an Equivalent Forced Outage Rate (EFOR) 

for each unit as an input. Instead, historical Generating Availability Data System (GADS) data events are 

typically entered in for each unit and SERVM randomly draws from these events to simulate the unit 

outages.  For this study, the mean time to repair and EFOR values from PLEXOS were utilized to calculate 

a mean time to repair value.  Distributions around these values were then developed to be input into SERVM 

to represent the unit outage uncertainty. To represent unit outages in SERVM, full outages, partial outages, 

and planned outages were used.  

The most important aspect of unit performance modeling in reliability studies is the cumulative MW offline 

distribution. Most service reliability problems are due to significant coincident outages. Figure 10 shows 

the distribution of outages for CAISO based on historical modeled outages. The figure demonstrates that in 

any given hour, the CAISO system can have between 0 and 3,500 MWs of its generators offline due to 

forced outages. Figure 7 below shows that in 10% of all hours throughout the year, CAISO has greater than 

2,500 MW in a non-planned outage condition. This is typically made up of several units that are on forced 

outage at the same time.    
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Figure 7.  Conventional Resources on Forced Outage as a Percentage of Time

 

Figure 8 shows the distribution of planned outages across the year used in the study. 

Figure 8.  Planned Maintenance 
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F.  Hydro Modeling 

Available hydro data from 1980 to 2014 was collected from the U.S. Energy Information Administration 

Form 923. Each project was assigned into one of the following appropriate regions for all 35 weather years. 

CAISO projects were assigned regions based on the definitions provided in the 2016 NQC List. 

AZPS PACW 

BCHA PGE Valley 

BPAT Portland General 

IID PSCO 

IPCO SCE 

LADWP SMUD 

NEVP TIDC 

NWMT WACM 

PACE WALC 

 

 

A proportional load following algorithm for hydro was used to replicate operations. The hydro dispatch 

adjusts its output as demand for electricity fluctuates throughout the day. Peak net load hours have the 

highest hydro and low load hours have the lowest hydro dispatch. Figure 9 shows an illustration of the net 

load and hydro dispatch over a 3-day period.  

Figure 9. CAISO Net Load and Hydro Dispatch Schedule 
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Using the actual hourly data from 2010 – 2014 available for SCE, PGE Valley, and BPAT, inputs were 

developed to be used by the proportional load following algorithm for every zone in WECC. 

The average daily minimum and maximum dispatch levels, the total monthly energy, as well as the monthly 

maximum dispatch level was identified from the historical hourly data for PG&E Valley, SCE, and BPAT. 

Minimum and maximum daily dispatch levels and monthly maximum dispatch levels were defined as a 

function of monthly total energy as shown in the Figures 10, 11, and 12 below. 

Figure 10. PGE Valley monthly maximum dispatch 
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Figure 11. PGE Valley Average Maximum Daily Dispatch Levels 

 
Figure 12. PGE Valley Average Minimum Daily Dispatch Levels  
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Figure 13 shows a comparison of the monthly hydro energy between the EIA Data and the CPUC Energy 

Division Data. 

Figure 13. Monthly Hydro Energy by Source 

 

Figure 14 shows the monthly maximum dispatch for EIA and CPUC Energy Division Data for PGE Valley. 

Figure 14. PGE Valley Monthly Max Dispatch by Data Source 
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For PGE Valley, SCE, and BPAT, the curve fit equations were then used to apply to historical energy from 

the monthly energies provided in the EIA data forms going back to 1980. Figure 15 shows the total hydro 

generation for CAISO by weather year that was used in the SERVM modeling runs.  

Figure 15. Hydro Energy 

 

Figure 16 shows the maximum capacity for the hydroelectric fleet for CAISO by weather year that was 

used in the SERVM modeling runs.  
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Figure 16. Maximum Capacity for CAISO Hydroelectricity Plants 
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Table 5.  Operating Reserve Requirements 

 % of Load 
Shed Firm Load to Maintain 

Reserves 

Regulation Up/Regulation Down 1.50% Yes 

Spin 3.00% Yes for 1.5% of the 3% 

Load Following Up 
5% for 33% RPS; 7% for 43% RPS; 

9% for 50% RPS  
No 

Load Following Down 
Load Following down is targeted at 

1.5% of load 
No 

Non Spin 3% No 

 

Figure 17 displays the operating reserve demand curve (ORDC) that was used to determine the price of 

scarcity in any given hour. The prices in the curve represent incremental scarcity pricing above the marginal 

cost resource that is committed to serve load. The ORDC only affects system costs to the extent purchases 

were made during scarcity situations such that the clearing price was affected by the ORDC.  The curve is 

assumed to be flat for the first 4% at a value representing the Value of Lost Load (VOLL). Therefore, if 

only enough resources were available to meet load plus 4% of operating reserves, the incremental scarcity 

pricing would be $1,000/MWh.  From a physical reliability perspective, however, this curve does not impact 

results as all available resources will be committed to prevent a loss of load event.   
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Figure 17.  Operating Reserve Demand Curve 
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Figure 18.  1-4 Hour Ahead Forecast Error 

 

In addition to longer-scale weather variation, load, wind, and solar profiles have significant intra-hour 

volatility.  
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Figure 19 shows the solar volatility on an average day, and Figure 20 shows the solar volatility on an 

extreme day.  

Figure 19. Solar Volatility on an Average Day

 

Figure 20. Solar Volatility on an Extreme Day 
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Figure 21 shows the multi-hour wind uncertainty for the 1 and 4 hour ahead uncertainties.  

Figure 21.  Multi-Hour Wind Uncertainty 
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Figure 22.  Day Ahead Solar Uncertainty 
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IV. Modeling of Study Cases 

Table 6 below is a summary of the study cases simulated. 

Table 6. Sensitivity Cases 

Case # Type of Case RPS % 

by 2026 

Load 

Following 

System Pmin Interchange 

3-Hr Ramp 

Net 

Exports 

Limit 

BC_01 

PRM Base Cases 

33% 5% of Load 

LTPP Default Unlimited 2,000 MW BC_02 43% 7% of Load 

BC_03 50% 9% of Load 

SC_01 Reference Case 50% 9% of Load LTPP Default Unlimited 2,000 MW 

SC_02 
Load Following 

(% of Load) 

  5% of Load       

SC_03   7% of Load       

SC_04   11% of Load       

SC_05 Load Following 

(Net Load 

Observed) 

 95th Pct     

SC_06  99th Pct     

SC_07  100th Pct     

SC_08 

System Pmin(+/- 

MW) 

    (-4,000)     

SC_09 

  

  (-2,000)     

SC_10   (+2,000)     

SC_11   (+4,000)     

SC_12 
Interchange 3-

Hour Ramp Limit 
 

  3,000 MW   

SC_13   6,000 MW   

SC_14   9,000 MW   

SC_15 

Net Exports 

        3,500 MW 

SC_16         5,000 MW 

SC_17         8,000 MW 

 

A.  Planning Reserve Margin (PRM) Base Cases 

Simulations were performed at 33%, 43%, and 50% renewable penetration. The assumptions used to 

develop the energy for the renewable penetration scenarios were based on projected load provided in the 

2016 LTPP Scenario Tool. With the exception of additional RPS and BTM generation, the 33% RPS, 43% 

RPS and the 50% RPS scenarios have the same load and generation. 
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However, since the capacity factors were slightly different over the 35 weather year scenarios used in the 

SERVM simulations from the single shape scenarios used in the CAISO runs, the cases were calibrated so 

that on average, considering all weather profiles, the total renewable energy by category in SERVM 

matched closely the total energy for each category.6 This resulted in differences in capacity in some of the 

renewable resources. Table 7 compares the capacity and energy in the 33%, 43%, and 50% scenarios for 

the CAISO RPS resources7.  

Table 7. Renewable Energy and Capacity Comparison for 33, 43, and 50% Renewable Penetrations 

(7a) 33% Renewable Penetration 

Resource 
Capacity 

(MW) 

Energy 

(MWh) 

Capacity 

Factor (%) 

PGE_Bay Solar 24 56,484 26.9 

PGE_Valley Solar 1,249 2,999,376 27.4 

SCE Solar 5,636 14,864,614 30.1 

SDGE Solar 109 272,094 28.5 

PGE_Bay Wind 902 2,207,670 27.9 

PGE_Valley Wind 562 1,375,123 27.9 

SCE Wind 4,109 9,253,979 25.7 

SDGE Wind 234 559,517 27.3 

(7b) 43% Renewable Penetration 

Resource 
Capacity 

(MW) 

Energy 

(MWh) 

Capacity 

Factor (%) 

PGE_Bay Solar 24 56,452 26.9 

PGE_Valley Solar 2,189 5,258,002 27.4 

SCE Solar 10,442 27,366,224 29.9 

SDGE Solar 109 271,541 28.4 

PGE_Bay Wind 1,148 2,809,197 27.9 

PGE_Valley Wind 400 978,675 27.9 

SCE Wind 4,373 9,846,365 25.7 

SDGE Wind 234 559,527 27.3 

 

                                                           
6 This data was obtained from the RPS Calculator scenarios referenced by the 2016 LTPP Scenario Tool 
7 Does not include SCE solar thermal resources 
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(7c) 50% Renewable Penetration 

Resource 
Capacity 

(MW) 

Energy 

(MWh) 

Capacity 

Factor (%) 

PGE_Bay Solar 25 58,972 26.9 

PGE_Valley Solar 2361 5,657,822 27.4 

SCE Solar 13864 36,231,008 29.8 

SDGE Solar 112 280,903 28.6 

PGE_Bay Wind 1192 2,916,851 27.9 

PGE_Valley Wind 1072 2,622,817 27.9 

SCE Wind 4510 10,153,497 25.7 

SDGE Wind 234 559,532 27.3 

 

Compared to the lower RPS base cases, more LOLEFLEX events initially occurred in the higher renewable 

penetration levels because the added volatility in the incremental renewable projects was not covered by 

additional ancillary service requirements. To get the LOLEFLEX back to a reasonable number, additional 

load following reserves were added to the higher RPS base cases, as explained in the “Operating and 

Flexibility Reserve Requirements” section earlier.  

B.  Load Following Reserves Cases 

The frequency and magnitude of LOLEFLEX events is largely driven by the input load following reserve 

target. While the load following reserves are not protected through the use of firm load shed, they will be 

procured when available from the external market or internally available resources. Carrying more load 

following reserves allows the system to absorb larger intra-hour net load volatility events. 

For this project, Load Following reserves were calculated using two different methods: 

• As a % of the hourly load – four cases were studied on 5, 7, 9, and 11% load following levels. 

• Based on Net Load observed in the previous 60 days –load following reserves target were set as a 

function of observed volatility in load, wind, and solar profiles (i.e., load net of wind and solar) 
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over the past 60 days.8 Three cases were studied based on max volatility level (100th percentile) in 

the past 60 days or the 99th or the 95th percent highest volatility value  

C.  System Pmin Cases 

Sensitivities were performed around resource Pmins by adjusting all minimum operating levels by the same 

percentage. The Pmin sensitivity modeling was performed by making larger changes to a smaller set of 

resources. The changes were primarily applied to the combined cycle fleet9. Some other small units with 

low heat rates were also used10. The total nameplate of all resources used in at least one Pmin scenario was 

approximately 16,939 MW with a starting minimum dispatch level of about 7,192 MW. 

The following Pmin sensitivities were performed for the 50% scenario: 

• -4000 MW 

• -2000 MW 

• Base Case 

• +2000 MW 

• +4000 MW 

When adjusting the Pmins, several other variables also had to be adjusted in concert. Since startup time 

measures the time required to achieve minimum output, new startup times were input to correlate lower 

Pmins with faster startups and higher Pmins with slower startups. Longer startup times also produced more 

energy, so fuel burn during start and the associated costs and emissions had to be adjusted as well. 

                                                           
8 This method attempts to mimic the persistence forecasting method used in certain ISO/RTO markets where 

forecast is based on actuals observed in the recent past. 
9 As an example, Blythe CC has a max capacity of 490 MW in all cases. In the Reference Case, its minimum 

capacity level was modeled as 264 MW. In the -4000 capmin case, its minimum capacity level was modeled as 92 

MW. In the +4000 MW case, its minimum capacity level was modeled as 324 MW. 
10 Specifically, all gas units with heat rates below 8.4 
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D. Interchange 3-Hour Ramp Limit Cases 

The reference case (SC_01) did not include any constraints on the import ramp limit other than the implicit 

constraint of neighboring zones being able to ramp their units fast enough to match the desired purchases 

in CAISO. Sensitivities were completed on the 50% RPS reference case to show the effect of aggregated 

3-hour ramp limits on the system. The ramp limits tested were 3,000, 6,000, and 9,000 MW. The ramp 

limits were only imposed on increases in imports so imports could drop by more than the limit in a 3-hour 

period. 

E. Net Export Sensitivities 

Studies were completed to test the effects of net exports on the system. The base case simulations allow 

CAISO to be net exporters of up to 2,000 MW if the neighboring regions were able to economically absorb 

the energy. This limit considers all imports (including dedicated imports) and exports. Sensitivities included 

3,500 MW, 5,000 MW, 8,000 MW, and unlimited exports. To test these effects, transmission constraints 

were modified to match the desired export capacity. 

F. Additional Energy Storage Sensitivities 

Two sets of sensitivity cases were modeled to understand 1) Reliability contribution; and 2) Economic and 

curtailment benefits of storage devices.  

To study reliability contributions, three cases were modeled by adding 3,000 MW, 6,000 MW, and 10,000 

MW of 4 hour duration battery storage to the reference study case. 

To study economic and curtailment benefits, four cases were modeled by adding a different 1,000 MW 

storage product to the reference study case: 

• 2-Hour 

• 4-Hour 

• 6-Hour 

• 8-Hour 
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V. Modeling Changes 

Over the course of the project, several modeling changes were incorporated in the SERVM modeling tool.  

With one exception11, all of the changes are intended to allow the project to better explore the flexibility 

needs of the system and to bring the commitment and dispatch decisions in SERVM more in line with 

CAISO’s system operations. 

A.  Timing of Unit Starts and Shutdowns 

Since SERVM was originally designed as an hourly model, several modeling procedures still had practices 

consistent with an hourly model instead of an intra-hour model. One of those components was the timing 

of unit starts and shutdowns. Previously all unit starts and shutdowns were implemented at the top of the 

hour. The effects of this commitment procedure included significant unnecessary curtailment as well as a 

small amount of incremental LOLE. When many units are brought online simultaneously, some efficiency 

in dispatch is lost due to most units operating at well below their rating.  

For this phase of CES-21, unit commitment decisions take place throughout the hour in an attempt to 

optimize production costs and minimize the potential for LOLE.  

B.  Intra-Hour CAISO Clearing 

Similar to Item A, intra-hour decisions improve the optimality of the commitment and dispatch. Previously, 

transfers were scheduled once per hour between SCE, SDGE and PGE. In this phase, enhancements were 

made to allow the three CAISO regions to clear economically at each 5-minute interval. This results in the 

identification of more hours and partial hours when Path 26 is constrained. When the path is constrained, 

SERVM ramps down the output of units in PGE and increases the output of units in SCE or SDGE to 

balance load and still respect the import/export constraints. 

                                                           
11 Section IV.A refers to a modeling error in SERVM, not an enhancement to reconcile differences in modeling 

practices between SERVM and those employed by CAISO. 
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C.  Pre-Emptive Market Ramping 

Ramping constraints were imposed on the interties for this phase of between 3,000 MW and 9,000 MW per 

hour. In the previous version, ramp rates were imposed on the OOS regions' units instead. The change in 

this phase allowed for more precise control of market purchase ramping. One issue that this raised was that 

in days with high net load peaks and significant ramps up to those peaks, the market may not schedule 

adequate purchases in advance of the need. Since SERVM performs market clearing on an hourly basis, 

signals may not always be received in the hours preceding the peak because of the lack of need in those 

prior hours. An enhancement was made to SERVM to recognize this need in advance and schedule market 

purchases accordingly. This was only imposed for the ramping constraint sensitivities as the base cases had 

unconstrained ramping capability.  

D. Intra-Hour Solar Uncertainty Cap 

Data from CAISO at 5-minute granularity was used for load, wind, and solar intra-hour volatility in all of 

the simulations. A cap and floor were placed on the intra-hour solar volatility of between -6.4% and 6.4% 

of the total hourly solar output depending on the current hour's output. This floor and cap were imposed 

because some of the intra-hour data which produced higher values appeared to be anomalous. 

E. Calculation of reliability metrics that account for operating flexibility shortages 

A series of flags were added in SERVM to calculate loss of load events due to shortages of flexibility rather 

than generic, non-flexible capacity, and to distinguish between hourly or multi-hour ramping shortages 

from intra-hour flexibility shortages.  After the simulation is completed, the model estimates:  

• Loss of Load Expectation Generic (LOLEGEN) – Events per year and only represents outage events 

that occur due to capacity shortfalls in peak conditions. If a resource is available but was not 

committed and cannot meet load due to ramp rates or startup times, then the event is not counted.   
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• Loss of Load Expectation FLEX (LOLEFLEX) – Events per year and events caused from system 

ramping deficiencies when a multi-hour ramping shortage was not identified. 

• Loss of Load Expectation Multi-Hour (LOLEMULTI-HOUR) – Events per year and events caused from 

system ramping deficiencies identified more than one hour in advance. 

Figure 23 explains the process used to estimate different sources of loss of load events. 

Figure 23. Flexibility Versus Capacity Shortages    

 

12 

The allocation to the three categories of LOLE is performed after a shortage has occurred. The logic in the 

model follows the steps in Figure 23. 

 

                                                           
12 Ramp Deficiency Projection is calculated by comparing the ramping capability over a multi-hour period to the 

actual net load ramp. 
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F.  Reporting Template 

New reporting templates have been developed to provide additional annual and monthly reports of loads 

and resources for individual cases and sensitivities allowing the user to compare expected output and 

individual weather year or load growth scenario outputs.  The reports are being designed to have the same 

look and feel of reports made available by the CAISO in past LTPP studies.   

G. Physical Curtailment Prevention 

The commitment logic in SERVM was updated to allow users to prevent the selection of commitment 

decisions which would result in curtailment, even if the decision was necessary to prevent firm load shed 

at another time in the day. 


