Flexibility Metrics and Standards Project

- a California Energy Systems for the 21st Century (CES-21) Project

CPUC Workshop January 6, 2016

Purpose & Agenda

- 1. Background
- 2. Project Objectives and Scope
- 3. Analysis and Preliminary Findings
 - 3.1 Analytical Framework and Study Cases
 - 3.2 Reliability
 - 3.3 Cost and Policy
 - 3.4 Metrics & Standards
- 4. Next Steps

Project Background

- 1. CES-21 Program
- 2. Flexibility Metrics & Standards Project
- 3. Project Team
 - Astrape Consulting, EPRI, LLNL, PG&E and SDG&E
- 4. Advisory Group
 - CAISO, CEC, CPUC, ORA, SCE, and TURN

Project Objectives

PROJECT OBJECTIVE

Study and recommend, if appropriate, planning metrics and standards that explicitly consider operational flexibility

RESOLUTION E-4677 REQUIREMENTS

Leverage results from collaborative review of planning model work

Form a collaborative advisory group

- Meet every six months
- Connect project progress with LTPP/RA flexibility modeling efforts

Produce results for use in the 2016 LTPP

- Present preliminary results / recommendations in a public workshop using 2014 LTPP assumptions
- Demonstrate recommended metrics / standards in the 2016 LTPP using updated assumptions

Project Scope – Key Questions

Q1 Reliability

How much capacity and operating flexibility is needed for the CAISO system to meet the 1 day in 10 years Loss of Load Expectation (LOLE) reliability standard in 2024?

Q2 Cost and Policy

Is there additional flexible capacity needed to achieve state policy goals or to lower cost? If so, what type of operating flexibility?

Q3 Metrics / Standards

How to translate capacity and flexibility requirements into planning standards (for procurement purposes)?

<u>In Scope</u>

Examine whether planning standards need to be updated to explicitly include operating flexibility

Out of Scope

Develop optimal solution to meet reliability, operating flexibility (and cost) goals for a generic electric system

Preliminary Findings and Indications – Summary

- F1 The projected CAISO system¹ has sufficient flexibility and capacity to meet the 1 day in 10 years standard in 2024, provided that:
 - a CAISO can curtail renewables to address hourly ramping needs
 - b CAISO can vary net import to meet hourly ramping needs
 - c CAISO sets aside sufficient load following reserves to meet intra-hour ramping needs
- F2 A less flexible system yields higher costs and emissions
 - ^a The Commission can review flexibility choices in the IRP process²
- I3 The existing PRM³ planning metric may continue to work
 - a If the reliability contribution of each resource type is accurately accounted for

Next Steps

a Confirm preliminary findings with a 50% RPS scenario and with improved modeling of WECC (and utilizing a high performance computing platform)

^{1. 2014} LTPP Trajectory and 40% RPS Scenarios; 2. As required in SB 350; 3. Planning Reserve Margin

Analytical Framework & Modeling Tool

Inputs	Model	Results			
Load and Resource Assumptions	Strategic Energy Risk Valuation Model (SERVM)	System Performance			
(e.g., CAISO system with 33% RPS in 2024)	(A hybrid resource adequacy and production cost model)	Reliability (capacity / flexibility) Cost Environmental Impact			
Uncertainties considered:	Modeling parameters:	Results included:			
 33 weather years (correlated profiles for load / wind / solar) 5 economic load growth uncertainty levels 25 (or more) resource outage draws Forecast errors for load / wind / solar (intra-day and intra-hour) 	 # of simulations for each case: 33 * 5 * 25 = 4,125 full years (8,760 hours each at 5 minute intervals) of system operation Loss of Load (LOL) defined as operating reserves (including regulations) drop below 4.5% of load Load Following Reserves set to address intra-hour ramping needs 	 LOLE due to lack of capacity LOLE due to lack of flexibility (new metrics) Unserved Energy Production costs CO2 emissions RPS curtailment 			

Ultimate Goal: Enable Commission and parties to understand the holistic impact of their proposals or actions

List of 22 Sensitivity Cases Studied

Sensitivity Case #		Case Name	Flexibility - Pmin	Installed Capacity	Flexibility - LFR ¹	Load Shed Threshold	
(33% RPS)	(40% RPS)						
Sa-01	<i>Sb-01</i>	Base Case ²	Base Case	Base Case	2% and 3% ³	4.5% of Load ⁴	
Sa-02	<i>Sb-02</i>	High Flexibility (-4k Pmin)	Base - 4k MW				
Sa-03	<i>Sb-03</i>	High Flexibility (-2k Pmin)	Base - 2k MW				
Sa-04	<i>Sb-04</i>	Low Flexibility (+2k Pmin)	Base + 2k MW				
Sa-05	<i>Sb-05</i>	Low Flexibility (+4k Pmin)	Base + 4k MW				
Sa-06	<i>Sb-06</i>	Low Flexibility (+6k Pmin)	Base + 6k MW				
Sa-07	<i>Sb-07</i>	Low Reserve Margin		Base - 1k MW			
Sa-08	<i>Sb-08</i>	Low Load Following			1% and 1.5% ³		
Sa-09	Sb-09	LOL ⁵ Sensitivity (3% Reserves)				3.0% of Load	
Sa-10	<i>Sb-10</i>	LOL Sensitivity (1.5% Reserves)				1.5% of Load	
Sa-11	<i>Sb-11</i>	LOL Sensitivity (0% Reserves)				0% of Load	

1. Load Following Reserves; 2. 2014 LTPP Trajectory or 40% RPS Scenario; 3. Target modeled as % of load + expected hourly net load ramp

4. Represents the minimum level of regulations and operating reserves that must be maintained; 5. Loss of Load

Definitions of <u>Traditional</u> and <u>New</u> Reliability Metrics

Overall Reliability Results For Projected Base Cases

* Assumes no incremental retirements for the 40% RPS case; A loss of load day is a day with one or more loss of load event

Results by Individual Metric – LOLE_{GENERIC-CAPACITY} vs. Installed Capacity

Based on the LOLE_{GENERIC-CAPACITY} metric alone, the 33% RPS system can afford to lose little capacity (less than 1,000 MW) in order to meet the reliability standard

Results by Individual Metric – LOLE_{INTRA-HOUR} vs. Load Following Reserves

In addition to installed capacity, sufficient load following reserves must be set aside to maintain a reliable system (this is mainly an operational, not planning, requirement)

Results by Individual Metric – LOLE_{MULTI-HOUR} vs. System Flexibility

The projected CAISO system experienced few loss of load events due to multi-hour deficiencies (LOLE_{MULTI-HOUR}), ASSUMMING...

Key Assumption #1: Curtailments

Unrestricted curtailments provide additional flexibility to mitigate LOLE_{MULTI-HOUR}

Key Assumption #2: Net Imports

Net imports provide additional flexibility to mitigate LOLE_{MULTI-HOUR}

However, flexibility from modeled net imports <u>exceeds</u> historical actuals More granular WECC modeling (in next phase) to further test assumption #2

Results by Cost & Policy Metrics – Costs & Emissions vs. System Flexibility

<u>Finding 2</u>: A less flexible system yields higher costs and emissions (across the flexibility sensitivities studied)

Metrics and Standards - Slight Refinement May Work?

Under the 33% and 40% RPS scenarios studied, operating flexibility appears to be mostly an economics or policy issue (e.g., cost, curtailments, and emissions)

Indication 3: The existing PRM planning metric may continue to work provided that the reliability contribution of each resource type is accurately accounted

Next Steps and Final Deliverables

- Next Steps
 - Improved WECC representation (Load and Generation)
 - Incorporate 2016 LTPP Assumptions (expected in Q1)
 - Collaborate with LLNL to deploy SERVM on the High Performance Computing (HPC) platform
 - Refine and validate preliminary findings
- Final CES-21 Project Deliverables
 - File a demonstration in the 2016 LTPP
 - Make final report and dataset available to the public

- 1. Model Comparison (From the 2014 Collaborative Review of Planning Models)
- 2. 22 Sensitivity Cases Summary of Results
- 3. Definitions by LOLE Type

APPENDIX

Model Comparison

(From the 2014 Collaborative Review of Planning Models)

Models/Approaches	Scenario(s) Considered	Simulating Operating Decisions		
Deterministic (CAISO Deterministic)	A single "base case" or "stress" scenario at a time	Assumes perfect foresight, considers operating cost		
Stochastic, statistical (SCE)		Assumes perfect foresight, caps resource outage to 1,000 MW		
Stochastic + uncertainty + recourse (REFLEX, SERVM)	Many scenarios, enables calculation of probability metrics (e.g. LOLE)	Considers uncertainty, operating costs, and ability to adjust decisions (recourse)		
Physics-based weather uncertainty + stochastic unit commitment (LLNL)		Considers physics-based weather uncertainty, operating costs, stochastic unit commitment		

Modeling approaches vary:

- One vs. multiple scenarios at a time
- A range vs. a cap of resource outages
- Various degrees of forecast error and variability
- Recourse

22 Sensitivity Cases – Summary of Results

Se	nsitivity	Flexibility -	Installed	Flexibility -	Load Shed	System	LOLE (Days	/ 10 Years)	Curtail	Total CO2
(Case #	Pmin	Capacity	LFR	Threshold					Emissions
						(\$ Millions)	Due to	Due to	(GWh)	(MMT)
							Capacity	Flex ²		
	Sa-01	Base				\$6,250	0.65	0.19	148	53
	Sa-02	- 4K				\$6,107	0.61	0.33	67	52
	Sa-03	- 2K				\$6,158	0.61	0.26	93	53
	Sa-04	+ 2K				\$6,374	0.64	0.00	225	54
PS	Sa-05	+ 4K				\$6,615	0.62	0.01	341	55
6 R	Sa-06	+ 6K				\$7,010	0.68	0.02	635	57
33%	Sa-07		-1K			\$6,256	1.91	0.36	165	53
	Sa-08			Low		\$6,190	0.90	0.92	147	53
	Sa-09				3%	\$6,235	0.00	0.11	152	53
	Sa-10				1.5%	\$6,219	0.00	0.25	159	53
	Sa-11				0%	\$6,178	0.00	0.25	161	53
	Sb-01	Base				\$5,937	0.14	0.27	1,930	47
	Sb-02	- 4K				\$5,644	0.15	1.09	1,241	45
	Sb-03	- 2K				\$5,737	0.13	0.59	1,503	46
	Sb-04	+ 2K				\$6,147	0.18	0.03	2,332	48
Sd	Sb-05	+ 4K				\$6,468	0.17	0.12	2,871	50
6 R	Sb-06	+ 6K				\$6,888	0.21	0.62	3,849	52
40%	Sb-07		-1K			\$5,954	0.60	0.53	2,010	47
	Sb-08			Low		\$5,820	0.16	2.48	1,900	47
	Sb-09				3%	\$5,909	0.00	0.23	1,964	47
	Sb-10				1.5%	\$5,885	0.00	0.22	2,011	47
	Sb-11				0%	\$5,680	0.00	0.19	1,971	45

1. Assuming a curtailment cost of \$50/MWh; 2. Includes LOLE flex events due to both intra-hour and multi-hour ramping deficiencies

Definitions by LOLE Type

