PNM Preliminary Reliability Analysis

Astrape Consulting Nick Wintermantel 4/18/2017

Topics

- Resource Adequacy Overview
- SERVM Model Overview
- Traditional Reserve Margin Target
- Flexibility Metrics
- RPS Scenarios and Rules of Thumb

Resource Adequacy Overview

Resource Adequacy

- Resource Adequacy Definition: The ability of supply-side and demand-side resources to meet the aggregate electrical demand (NERC Definition)
- Resource Adequacy Studies
 - Reserve Margin Study
 - Goal: Calculate generating capacity deficiencies and determine the amount of capacity needed to maintain resource adequacy during peak conditions
 - Purpose: Input or validation of expansion planning processes
 - Flexibility Study
 - Goal: Determine reliability deficiencies including both firm load shed events and renewable resource curtailment due to system ramping/startup constraints (not capacity deficiencies)
 - Purpose: Provides assistance in setting appropriate parameters for resource additions and to determine system operating reserve requirements

Resource Adequacy Metrics

- Loss of Load Expectation (LOLE_{CAP}): Expected number of firm load shed events in a given year due to capacity shortfalls
- Loss of Load Expectation (LOLE_{FLEX}): Expected number of firm load shed events in a given year due to not having enough ramping capability
- Loss of Load Hours (LOLH_{CAP}): Expected number of hours of firm load shed in a given year due to capacity shortfalls
- Loss of Load Hours (LOLH_{FLEX}): Expected number of hours of firm load shed in a given year due to not having enough ramping capability
- Expected Unserved Energy (EUE_{CAP}): Expected amount of firm load shed in MWh for a given year due to capacity shortfalls
- Expected Unserved Energy (EUE_{FLEX}): Expected amount of firm load shed in MWh for a given year due to not having enough ramping capability

Definitions of Existing and New Reliability Metrics

SERVM Model Overview

Strategic Energy Risk Valuation Model (SERVM)

- SERVM has over 30 years of use and development
- Probabilistic hourly and intra-hour chronological production cost model designed specifically for resource adequacy and system flexibility studies
- SERVM calculates both resource adequacy metrics and costs
- SERVM used in a variety of applications for the following entities:
 - Southern Company
 - TVA
 - Louisville Gas & Electric
 - Kentucky Utilities
 - Duke Energy
 - Progress Energy
 - FERC
 - NARUC
 - PNM
 - TNB (Malaysia)

- EPRI
- Santee Cooper
- CLECO
- California Public Utilities Commission
- Pacific Gas & Electric
- ERCOT
- MISO
- PJM
- Terna (Italian Transmission Operator)
- NCEMC
- Oglethorpe Power

SERVM Uses

Resource Adequacy

- Loss of Load Expectation Studies
- Optimal Reserve Margin
- Operational Intermittent Integration Studies
 - Penetration Studies
 - System Flexibility Studies
- Effective Load Carrying Capability of Energy Limited Resources
 - Wind/Solar
 - Demand Response
 - Storage
- Fuel Reliability Studies
 - Gas/Electric Interdependency Questions
 - Fuel Backup/Fixed Gas Transportation Questions
- Transmission Interface Studies

Resource Planning Studies

- Market Price Forecasts
- Energy Margins for Any Resource
- System Production Cost Studies
- Evaluate Environmental/Retirement Decisions
- Evaluate Expansion Plans

Resource Commitment and Dispatch

- 8760 Hourly Chronological Commitment and Dispatch Model
- Simulates 1 year in approximately 1 minute allowing for thousands of scenarios to be simulated which vary weather, load, unit performance, and fuel price
- Capability to dispatch to 1 minute interval
- Respects all unit constraints
 - Capacity maximums and minimums
 - Heat rates
 - Startup times and costs
 - Variable O&M
 - Emissions
 - Minimum up times, minimum down times
 - Must run designations
 - Ramp rates

Simulations are split across multiple processors linked up to the SQL Server

Resource Commitment and Dispatch

- Commitment Decisions on the Following Time Intervals allowing for recourse
 - Week Ahead
 - Day Ahead
 - 4 Hour Ahead, 3 Hour Ahead, 2 Hour Ahead, 1 Hour Ahead, and Intra-Hour
- Load, Wind, and Solar Uncertainties at each time interval (decreasing as the prompt hour approaches)
- Benchmarked against other production models

1 - 4 Hour Ahead Forecast Error

Ancillary Service Modeling

Ancillary Services Captured

- Regulation Up Reserves
- Regulation Down Reserves
- Spinning Reserves
- Non Spinning Reserves
- Load Following Reserves

Co-Optimization of Energy and Ancillary Services

 Each committed resource is designated as serving energy or energy plus one of the ancillary services for each period

SERVM Framework

- Base Case Study Years (2021 and 2024)
 - Weather (36 years of weather history)
 - Impact on Load
 - Impact on Intermittent Resources
 - Economic Load Forecast Error (distribution of 5 points)
 - Unit Outage Modeling (thousands of iterations)
 - Multi-State Monte Carlo
 - Frequency and Duration
 - Base Case Total Scenario Breakdown: 36 weather years x 7 LFE points = 252 scenarios
 - Base Case Total Iteration Breakdown: 252 scenarios * 10 unit outage iterations = 2,520 iterations
 - Intra Hour Simulations at 5-minute Intervals

Reserve Margin Study

Load Modeling: Summer Peak Weather Uncertainty

Includes Entire Balancing Area

LTING CONS visibility. profitability. execution.

Using CBO GDP approach and assuming 30% multiplier for electric load growth compared to GDP growth

Load Forecast Error Multipliers	Probability %
0.95	2.7%
0.97	14%
0.99	23.8%
1.00	19.1%
1.01	23.8%
1.03	14%
1.05	2.7%

Renewable Shapes: 36 Years

innovation in electric system planning

Unit Outage Modeling

Full Outages

- Time to Repair
- Time to Failure

Partial Outages

- Time to Repair
- Time to Failure
- Derate Percentage
- Startup Failures
- Maintenance Outages
- Planned Outages
- Based on Historical Operation

Unit Name	Capacity (MW)	EFOR
P. VERDE_1	134	2.15
P. VERDE_2	134	0.73
P. VERDE_3	134	3.11
FOURCORN_4	100	20.75
FOURCORN_5	100	17.61
SAN JUAN_1	170	18.29
SAN JUAN_4	327	16.06
LUNA_1	185	5.42
AFTONCC_1	230	5.77
DELTA_1	138	9.32
La_Luz	40	6.64
REEVES_1	44	5.05
REEVES_2	44	0.71
REEVES_3	66	7.17
VLNCPPA_1	145	1.43
LORDSBRG_1	40	7.08
LORDSBRG_2	40	6.45

System Unplanned Outages

Study Topology and Market Assistance 2013 Reserve Margin Study

20

Emergency Operating Procedures

Demand Response

	Power Saver	Peak Saver
	Program	Program
Capacity (MW)	33.75	20
Season	June-Sept	June-Sept
Hours Per Year	100	100
Hours Per Day	4	6

Firm load shed to maintain reserves equal to 4% of load

LOLE_{CAP} Results 2021 Study Year

- Recommend minimum reserve margin at no higher than 0.2 LOLE_{CAP}: 17% reserve margin
- Traditional 1 day in 10 year standard: $0.1 \text{ LOLE}_{CAP} = 21\%$ reserve margin
- Assuming no external regions, a 16.5% reserve margin results in over 8 LOLE_{CAP} events per year. Neighbor assistance during peak hours can range from 0 MW to 300 MW depending on neighbor conditions.

Flexibility Metrics

Definitions of Existing and New Reliability Metrics

Renewable Curtailment Example

Represents a day in the 2021 50% RPS scenario

- Identify LOLE_{FLEX} events and renewable curtailment (overgen) events
- Solve the deficiencies using the following approaches and calculate costs:
 - Change operating procedures (i.e. raise load following requirement)
 - Add flexible capacity and/or replace existing capacity
- Production Costs = Fuel Costs + Variable O&M + Emission Costs + Cost of EUE
 - PPA prices assumed for wind and solar

Base Case Physical Reliability Results Varying Operating Reserve Levels

- Study Years: 2021
- Reg Requirement: 4% of Load
- Spin + Load Following Requirement = Simulated at 5% and 7%
- Quick Start Target: 4% of Load

	Renewable	LF	Renewable	Renewable	LOLE	LOLE	Production	
	Penetration	Target	Curtailment	Curtailment	САР	FLEX	Costs	
		% of	% of		Events	Events Per		
	% of Load	Load	Renewable	MWh	Per Year	Year	M\$	
2021								
Base								Cost
Case	17.0%	5.0%	1.8%	43,131	0.18	0.18	369.9	Increase
2021								∽ due to LF
Base								increase
Case	17.0%	7.0%	1.9%	45,019	0.18	0.08	373.3	

Curtailment Comparison 1x20 MW solar plant = annual output of 44,000 MWh

Base Case Physical Reliability Results Varying Operating Reserve Levels

- Study Year: 2024
- Reg Requirement: 4% of Load
- Spin + Load Following Requirement = Simulated at 5% and 7%
- Quick Start Target: 4% of Load

	Renewable		Renewable	Renewable		LOLE	Production	
	Penetration	LF Target	Curtailment	Curtailment	LOLE CAP	FLEX	Costs	
			% of		Events	Events		
	% of Load	% of Load	Renewable	MWh	Per Year	Per Year	M\$	
2024								
Base								Cost
Case	21.1%	5.0%	1.1%	34,213	0.19	0.44	514.2	Increase
2024								└── due to
Base								increase
Case	21.1%	7.0%	1.1%	34,747	0.19	0.11	519.6	

Curtailment Comparison 1x20 MW solar plant = annual output of 44,000 MWh

2024	LOLE Cap	LOLE Flex	Curtailment
Month	Events Per Year	Events Per Year	MWh
1	-	0.007	2,667
2	_	0.008	3,455
3	_	0.026	3,718
4	-	0.016	3,413
5	_	0.007	4,747
6	0.036	0.002	1,918
7	0.090	0.009	931
8	0.064	0.007	1,001
9	0.003	0.000	1,920
10	-	0.016	2,440
11		0.011	4,494
12	_	0.005	3,044
Total	0.193	0.114	33,747

RPS Scenarios and Rules of Thumb

Technology	L E Target
recimology	
Base Case	5%, 7%
Base Case 40% RPS (66.7% Solar)	7%, 13%, 15%
Base Case 40% RPS (66.7% Wind)	7%, 13%, 15%
Base Case 50% RPS (66.7% Solar)	7%, 13%, 15%
Base Case 50% RPS (66.7% Wind)	7%, 13%, 15%
Base Case 80% RPS (66.7% Solar)	7%, 13%, 15%
Base Case 80% RPS (66.7% Wind)	7%, 13%, 15%

To build RPS portfolios, additional solar and wind was added to the system: Either 66% of the incremental additions were designated as wind or solar

Net Load Intra Hour Uncertainty

2024 RPS Scenarios @ 7% LF

	Renewable					Production
	Penetration	LF Target	Curtailment	Curtailment	LOLE	Costs
			% of		Events Per	
	% of Load	% of Load	Renewable	MWh	Year	M\$
Base Case	21.1%	7.0%	1.1%	33,747	0.11	519.6
Base Case 40% RPS (66.7% Solar)	40.9%	7.0%	10.5%	613,496	6.83	527.5
Base Case 40% RPS (66.7% Wind)	40.6%	7.0%	7.8%	454,097	5.04	523.5
Base Case 50% RPS (66.7% Solar)	51.4%	7.0%	18.2%	1,333,517	16.05	553.8
Base Case 50% RPS (66.7% Wind)	50.8%	7.0%	13.1%	948,907	16.39	541.4
Base Case 80% RPS (66.7% Solar)	82.8%	7.0%	37.7%	4,457,962	55.62	686.2
Base Case 80% RPS (66.7% Wind)	81.7%	7.0%	29.4%	3,423,730	68.60	650.3

Curtailment Comparison 1x20 MW solar plant = annual output of 44,000 MWh 1x500 MW solar plant = annual output of 1,100,000 MWh

2024 RPS Scenarios @ 7% LF

	Renewable	LE Target	Renewable	Renewable		Production
	Penetration	LF larget	Curtailment Curtailment			Costs
			% of		Events Per	
	% of Load	% of Load	Renewable	MWh	Year	M\$
Base Case	21.1%	7.0%	1.1%	33,747	0.11	519.6
Base Case 40% RPS						
(66.7% Solar)	40.9%	15.0%	12.9%	751,179	0.44	554.0
Base Case 40% RPS						
(66.7% Wind)	40.6%	15.0%	10.0%	579,932	0.28	549.7
Base Case 50% RPS						
(66.7% Solar)	51.4%	15.0%	19.8%	1,450,165	1.22	575.1
Base Case 50% RPS						
(66.7% Wind)	50.8%	15.0%	15.3%	1,111,892	0.85	564.2
Base Case 80% RPS						
(66.7% Solar)	82.8%	15.0%	38.8%	4,578,472	7.12	694.7
Base Case 80% RPS						
(66.7% Wind)	81.7%	15.0%	31.0%	3,610,875	10.15	656.2

Renewable Curtailment

Average = % of total renewable fleet curtailed at each RPS level Marginal = % of next MWh that will be curtailed at each RPS level

Cost by RPS Level

Assumes \$39 PPA pricing for new solar and \$40 PPA pricing for new wind.

2024 RPS Scenarios add Flexible Generation or Battery

	Renewable Penetration	LF Target	Curtailment	Curtail- ment	LOLE _{CAP}	LOLE _{FLEX}	Producti onCosts
					Events Per	Events Per	~
	% of Load	% of Load	%	MWh	Year	Year	M\$
Base Case 40% RPS (66.7% Wind)	40.6%	13%	9.4%	541,689	0.10	0.48	543.0
Base Case 40% RPS (66.7% Wind)	40.6%	15%	10.0%	579,932	0.10	0.28	549.7
Base Case 40% RPS (66.7% Wind) and 2 I M6000 (80 MW)	40.6%	13%	9.2%	534 093	0.04	0 50	539.0
Base Case 40% RPS (66.7% Wind) and 100 MW 2 hour storage	40.6%	13%	8.9%	514,306	0.04	0.31	536.7
Base Case 40% RPS (66.7% Wind) and 100 MW 4 hour storage	40.6%	13%	8.6%	495,383	0.03	0.27	535.7
Base Case 40% RPS (66.7% Wind) and 100 MW 6 hour storage	40.6%	13%	8.4%	483,445	0.02	0.27	535.5

Represents First Pass at Results; Production Costs do not include capital costs

RPS	Required Load Following	Renewable Curtailment
20%	7% of Load	<50,000 MWh
30%	13% of Load	100,000 - 200,000 MWh
40%	>15% of Load	400,000 - 800,000 MWh
50%	>15% of Load + Significant Additional Flexible Resources	900,000 - 1,500,000 MWh
80%	>15% of Load + Significant Additional Flexible Resources	3,500,000 - 4,500,000 MWh

